

LT7589

High Performance Uart TFT Display Controller

Brief Specification

V1.3

www.levetop.cn

Levetop Semiconductor Co., Ltd.

Version History

Version	Release Date	Description
V1.0	2024/10/29	LT7589 Preliminary Release
V1.0A	2024/12/30	Update Application Circuit
V1.1	2025/03/20	 Update Pin - VDD33_IO Description Update Application Circuit
V1.2	2025/04/21	 Modify the pin signal description of "LCD_XI" Update Table 6-4 External Flash Signal Description Update Application Circuit
V1.3	2025/11/28	Table 8-1: QFN-96Pin DimensionsFigure9-2: LT7589B Application Circuit

Copyright

The copyright of this document belongs to Levetop Semiconductor Co., Ltd. If you need to copy or duplicate it, please obtain Levetop Semiconductor's permission in advance. Although the information recorded in this document has been proofread, Levetop Semiconductor assumes no responsibility for the specifications of the document usage instructions. The applications mentioned in the document are for reference only, and Levetop Semiconductor does not guarantee that such applications do not require further modification. Levetop Semiconductor reserves the right to change its product specifications or documents without prior notice. For the latest product information, please visit our website Https://www.levetop.cn.

Content

Ve	rsion	ı History	2
Со	pyrig	yht	2
Со	nten	t	3
Fiç	gure l	List	4
Та	ble L	ist	4
1.	Chip	Introduction	5
2.		lication Block Diagram	
3.	Inter	rnal Block Diagram	7
4.	Feat	tures	8
5.	Pin A	Assignment	10
6.	Pin l	Description	. 12
	6.1	SCI (Uart) Signals	12
	6.2	LCD Panel Signals	13
	6.3	QSPI Signals	
	6.4	External Flash Signals	
	6.5	PWM Signals	16
	6.6	USB Signals	
	6.7	GPIO and Intrrrupt Signals	
	6.8 6.9	ADC Input Signals	
		Miscellaneous Signals Power and Clock Signals	
		GPIO Resources of Different TFT Panels	
7			
7.		ction Description	
8.	Pac	kage Information	28
	8.1	LT7589A (QFN-96pin)	28
	8.2	LT7589B (LQFP-128pin)	
	8.3	LT7589A PCB Layout Suggestions	30
9.	App	l <mark>ic</mark> ation Circuit	31

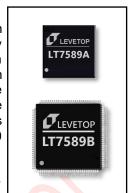

Figure List

Figure 2-1: LT7589 Designned on TFT Module	5
Figure 2-2: LT7589 Designned on System Board	
Figure 2-3: LT7589 Application Architecture	6
Figure 3-1: LT7589 Internal Block Diagram	7
Figure 5-1: LT7589A Pin Assignment (QFN-96Pin)	10
Figure 5-2: LT7589B Pin Assignment (LQFP-128Pin)	11
Figure 7-1: Communication Mode between LT7589 Internal MCU and TFT Graphics Accelerator	26
Figure 7-2: Communication Mode with the Host MCU	26
Figure 7-3: The Main Screen of UI_Editor Tool	27
Figure 7-4: LT7589 Internal Memory	27
Figure 8-1: QFN-96Pin Outline	28
Figure 8-2: LQFP-128Pin Outline	29
Figure 8-3: Design Suggestion-1 for LT7589A Bottom Pad PCB Layout	30
Figure 8-4: Design Suggestion-2 for LT7589A Bottom Pad PCB Layout	30
Figure 9-1: LT7589A Application Circuit	31
Figure 9-2: LT7589B Application Circuit	32
<u>Table List</u>	
Table 3-1: Part Number	7
Table 6-1: SCI (Uart) Signals	12
Table 6-2: LCD Panel Signals	13
Table 6-3: QSPI Signals	14
Table 6-4: External Flash Signals	15
Table 6-5: PWM Signals	
Table 6-6: USB Signals	
Table 6-7: GPIO and Interrupt Sig <mark>n</mark> als	
Table 6-8: ADC Input Signals	
Table 6-9: Miscellaneous Signals	
Table 6-10: P <mark>ower and Cl</mark> ock Signals	
Table 6-11: LT7589A GPIO Resources	
Table 6-12: LT7589B GPIO Resources	
Table 8-1; QFN-96Pin Dimensions	
Table 8-2: LQFP-128Pin Dimensions	29

1. Chip Introduction

LT7589 is a high-performance Serial Uart TFT Panel Controller. Internally integrated with a 32-bit RISC MCU and a GUI (Graphic User Interface) with TFT LCD graphics display controller, the main function is to provide Uart serial communication, allowing the main control MCU to easily present the information to be displayed on the TFT panel through simple serial commands. The internal hardware of LT7589 also provides JPG image decoding PIP (Picture-in-Picture), Geometric drawing and other functions can improve the display efficiency of TFT panel and reduce the time required for MCU to process graphic displays. The LT7589 supports display resolutions ranging from 480 * 480 (QVGA) to 1280 * 800, suitable for 16/24bit RGB interface TFT displays.

The internal MCU of LT7589 has a maximum clock frequency of 200MHz, contains 2MB Flash, 768KB SRAM, 16MB display memory, and is combined with JPG decoder, 2D

graphics acceleration display, DMA data reading, and high-speed QSPI Flash interface to quickly read images, animations, word libraries, and other information stored in external QSPI Flash, with good display performance. LT7589 can be used in conjunction with UI editing software (UI-Editor) and simulation software (UI-Emulator) developed by Levetop Semiconductor to directly import and develop display interfaces for designed UI materials and display interaction logic on a computer. Its supported display functions include image display, animation display, sliding menu display, progress bar display, string display, Chinese English keyboard, numeric keyboard, analog clock, digital clock, pointer display, QR code generation, multi language, audio playback, variable control, and control effects combined with touch screen or encoder functions. In addition to the serial port screen Uart communication interface, LT7589 also provides multiple sets of SCI (Uart) interfaces to connect components such as Bluetooth modules, WiFi modules, etc. It also offers CanBus, SD card (SPI mode), analog input AIN, PWM, and INT interrupt interfaces, and comes with an RTC clock. It can also be used for GUI graphic development in Little VGL, with good fluency and high cost-effectiveness.

Due to its high capacity of Flash and SRAM, the LT7589 can also be used as a main control MCU with a TFT controller, completing the main control and TFT display functions with one LT7589. Its display function is very suitable for electronic products with TFT-LCD panels below 1280x800 resolution, or to replace the original monochrome panel products, enhancing the product's intelligent display of information, increasing product quality and grade. The powerful display function of LT7589 is very suitable for use in electronic products with TFT-LCD panels, such as various smart home appliances, car dashboards, motorcycle panels, multifunctional transaction machines, industrial controls, electronic instruments, medical beauty equipment, testing equipment, charging equipment, inverters, UPS and other power equipment, audio equipment, as well as smart speakers with TFT panel, robots and other products.

2. Application Block Diagram

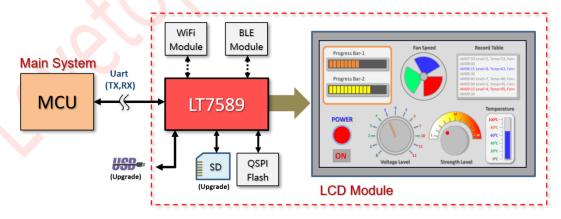


Figure 2-1: LT7589 Designed on TFT Module

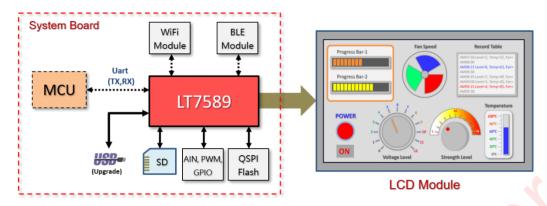


Figure 2-2: LT7589 Designed on System Board

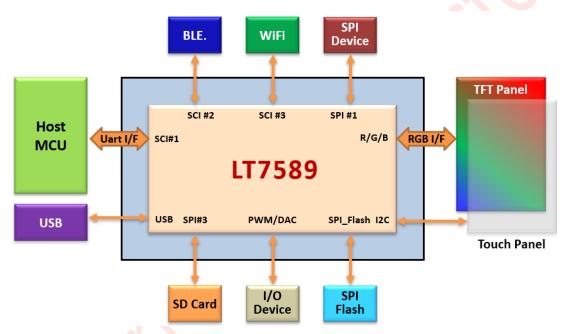


Figure 2-3: LT7589 Application Architecture

3. Internal Block Diagram

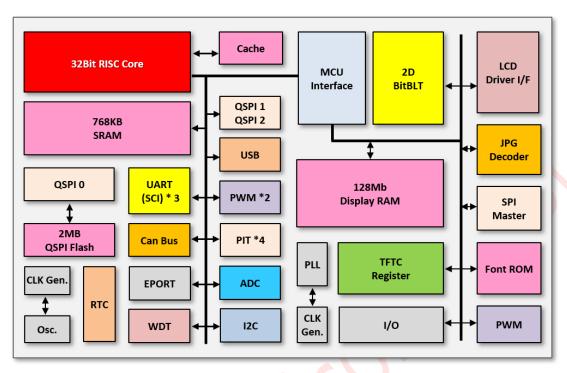


Figure 3-1: LT7589 Internal Block Diagram

Table 3-1: Part Number

Model	Package	Display RAM	Resolution	Colors
LT7589A	QFN-96	128Mb	1280*800	16.7M Color αRGB 8:8:8:8
LT7589B	LQFP-128	128Mb	1280*800	16.7M Color αRGB 8:8:8:8

4. Features

Host MCU Interface

- Support Uart, USB Interface
- Embedded 32Bit MCU, main clock is 180MHz, and 200MHz for max.

USB Interface

■ Support USB2.0 Full Speed。

SCI (Uart) Interface

- Supports Three SCI (Serial Communications Interface)
- Components or modules that can be connected to external SCI interfaces

Memory

- MCU Embedded 2M bytes Flash
- MCU Embedded 512K+256K bytes SRAM
- TFT Controller Embedded 128Mbit Display RAM

Display Data Format

- 16bpp: Color RGB 5:6:5 (2bytes/pixel)
- 24bpp: Color RGB 8:8:8 (3bytes/pixel)
 - αRGB 4:4:4:4 (4,096 Index color/pixel, including transparency attribute)
- 32bpp: Color αRGB 8:8:8:8 (4bytes/pixel)

Panel Interface and Resolution

- Supports 16 or 24bits RGB Interface Panel
- Supported resolutions for bare metal development:

➤ VGA : 640*480 TFT Panel
 ➤ WVGA : 800*480 TFT Panel
 ➤ SVGA : 800*600 TFT Panel

XGA : 1024*768 TFT Panel
 SXGA : 1280*1024 TFT Panel

■ Maximum resolution supported during serial TFT

pane<mark>l deve</mark>lopment: 1280*800

Geometry Display accelerator

■ Provide drawing functions such as drawing points, lines, curves, ellipses, triangles,

rectangles, rounded rectangles, etc

Display Functions

- Built in JPG hardware decoder
- Support users to define four 32*32 graphic cursor options.
- Provide virtual display function: Virtual display can display images larger than the size of the LCD panel, so that the images can easily scroll in any direction.
- Provide Picture in Picture (PIP) display: Supports two PIP window regions: the enabled PIP window is displayed above the main window, while the PIP1 window is displayed above the PIP2 window.
- Support multiple display functions: You can switch the main display window between display buffers to achieve simple animation display effects.
- Support the function of quickly displaying images when awakened.
- Supports mirroring and vertical flipping display functions.
- Color Bar Display: It can still be displayed in ribbon format without writing data to the internal display memory, with a default resolution of 640 * 480 pixels.

BitBLT Engine

- Built in 2D BitBLT engine.
- Provide the function of copying images with raster operation.
- Provide color depth conversion.
- Solid filling and pattern filling functions:
 - ➤ Provide user-defined 8*8 images or 16*16 images.
- Provide the function of combining two images into one image:
 - Chroma Keying function: Mix the image with specified RGB colors based on transparency
 - Window Alpha blending mode: Mix two images based on the transparency within the specified area.
 - Pixel blending transparency mode (Dot Alpha blending): Mix two images based on RGB format and transparency.

Display Text Mode

- Built in ISO/IEC 8859-1/2/4/5 font sizes of 8*16, 12*24, and 16*32
- Support users to customize half shaped character angles and full shaped characters (8*16, 12*24, 16*32, 16*16, 32*32).
- Supports full font sizes of 48*48 and 72*72
- Provide programmable text cursor.
- Supports vertical and horizontal font enlargement (*1, *2, *3, *4x).
- Supports 90 degree rotation of text

SPI Master Interface

- The TFT graphics accelerator provides external serial flash data copying to the frame buffer.
- Compatible with standard QSPI specifications NOR/NAND Flash.
- Support bad block handling in Nand Flash.
- Support MCU to use Pass Mode for SPI Flash.
- Provide 16 bytes read FIFO and 16 bytes write FIFO.
- When the Tx FIFO is completely cleared and the SPI Tx/Rx engine is idle, an interrupt will be issued.
- Provide 2 additional sets of compatible standard SPI interfaces.

I2C Interface

- MCU provides I2C interface to connect with external I2C devices
- Provide standard transmission mode (100kbps) and fast transmission mode (400kbps)

PWM Interface

- MCU provides 8 PWM interfaces
- The TFT controller has two built-in 16bit counters and provides two PWM output interfaces
- Programmable operation cycle

Interrupt Signals

- MCU can provide up to 19 interrupt input
- The TFT controller provides an interrupt output interface.

GPIO

- MCU can provide up to 24 GPIO Port
- The TFT controller can provide up to 17 GPIO Port

Analog Input

■ MCU Supports eight ADC Analog Input

Reset

- MCU provides power on reset, external reset input, software reset, watchdog reset, and voltage detection reset
- The TFT controller provides power on reset, external hardware reset, and software command reset

Power Saving Mode

- Support Standby mode, Suspend mode and Sleep Mode
- Support MCU wake up

Clock

- MCU and TFT controller have independent clocks.
- MCU built-in precise high-frequency clock
- Built in RTC and external 32KHz crystal oscillator circuit.
- TFT controller with built-in programmable PLL, providing internal clock, external LCD clock, and internal display memory clock

Power Supply

■ VDD Power: 3.3V +/- 0.3V

■ Embedded 1.2V LDO

Package Type

- QFN-96Pin (10*10mm²)
- LQFP-128Pin (14*14mm²)

Operation Temp.

■ -40°C~85°C。(@180MHz)

5. Pin Assignment

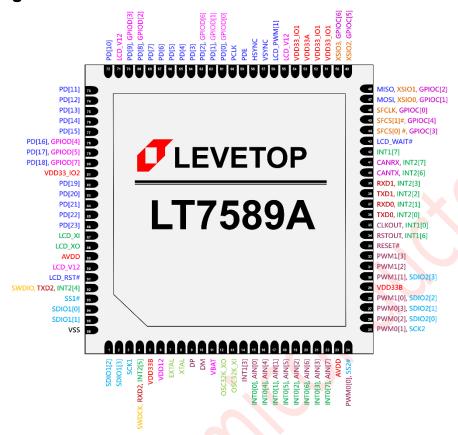


Figure 5-1: LT7589A Pin Assignment (QFN-96Pin)

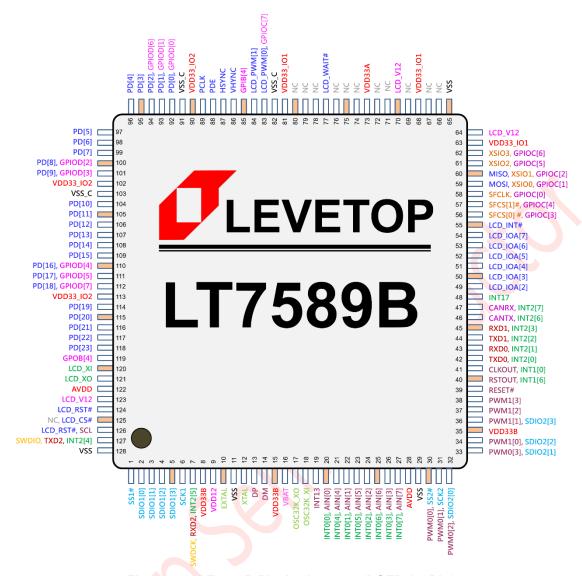


Figure 5-2: LT7589B Pin Assignment (LQFP-128Pin)

6. Pin Description

6.1 SCI (Uart) Signals

Table 6-1: SCI (Uart) Signals

Pin # LT7589A	Pin # LT7589B	Pin Name	I/O	Description
				Serial Communication (Uart) #0 Receives Data Input
37	43	RXD0	I	This signal is used for SCI #0 receiver data input and can be used to connect external SCI interface components or modules. It can also be used as a regular GPIO or interrupt input interface INT2[1].
				Serial communication (Uart) #0 Transmission Data Output
36	42	TXD0	0	This signal is used for SCI #0 transmitter data output and can be used to connect external SCI interface components or modules. It can also be used as a regular GPIO or interrupt input interface INT2[0].
				Serial Communication (Uart) #1 Receives Data Input
39	45	RXD1	Ι	This signal is used for SCI #1 receiver data input and can be used to connect external SCI interface components or modules. It can also be used as a regular GPIO or interrupt input interface INT2[3].
				Serial communication (Uart) #1 Transmission Data Output
38	44	TXD1	0	This signal is used for SCI #1 transmitter data output and can be used to connect external SCI interface components or modules. It can also be used as a regular GPIO or interrupt input interface INT2[2].
				Serial Communication (Uart) #2 Receives Data Input
4	7	RXD2		This signal is used for SCI #2 receiver data input and can be used to connect external SCI interface components or modules. It can also be used as a regular GPIO or interrupt input interface INT2[5].
				Serial communication (Uart) #2 Transmission Data Output
92	127	TXD2	0	This signal is used for SCI #2 transmitter data output and can be used to connect external SCI interface components or modules. It can also be used as a regular GPIO or interrupt input interface INT2[4].

6.2 LCD Panel Signals

Table 6-2: LCD Panel Signals

Pin # LT7589A	Pin # LT7589B	Pin Name	I/O			Description		
				TFT	Panel Data Bus LCD data bus outprresponding RGB			nect
					Pin	TFT-LCD	Interface	
					Name	16bits	24bits	
					PD[0]	GPIOD[0]	В0	,
					PD[1]	GPIOD[1]	B1	
					PD[2]	GPIOD[6]	B2	
					PD[3]	В0	В3	
					PD[4]	B1	B4	
					PD[5]	B2	B5	
					PD[6]	B3	В6	
					PD[7]	B4	В7	
					PD[8]	GPIOD[2]	G0	
86~82,	118~114,	PD[23:19],			PD[9]	GPIOD[3]	G1	
80~72,	112~104,	PD[18:10],	0		PD[10]	G0	G2	
70~61	101~92	PD[9:0]			PD[11]	G1	G3	
					PD[12]	G2	G4	
					PD[13]	G3	G5	
					PD[14]	G4	G6	
					PD[15]	G5	G 7	
					PD[16]	GPIOD[4]	R0	
					PD[17]	GPIOD[5]	R1	
					PD[18]	GPIOD[7]	R2	
					PD[19]	R0	R3	
					PD[20]	R1	R4	
					PD[21]	R2	R5	
					PD[22]	R3	R6	
					PD[23]	R4	R7	
					n the LCD is set t be defined as GPIC		tion mode, some I	PDs
				Pixe	l Clock			
60	89	PCLK	0		eric TFT interface s internal PLL.	signal for panel so	can clock. It derive	s

Pin # LT7589A	Pin # LT7589B	Pin Name	I/O	Description
57	86	VSYNC	0	VSYNC Pulse Signal Generic TFT interface signal for vertical synchronous pulse.
58	87	HSYNC	0	HSYNC Pulse Signal Generic TFT interface signal for horizontal synchronous pulse.
59	88	PDE	0	Data Enable Signal Generic TFT interface signal for data valid or data enable.

6.3 QSPI Signals

Table 6-3: QSPI Signals

Pin # LT7589A	Pin # LT7589B	Pin Name	I/O	Description
				QSPI #1 Serial Clock Signal
3	6	SCK1	0	This signal is the clock signal output of the first group SPI and can be used to connect components or modules of external SPI interfaces.
93	1	SS1#	0	QSPI #1 Chip Selection Signal
	'	001#	0	This signal is the chip selection output of the first group SPI.
	_			Data Output/Input Signal of QSPI #1
94	2	SDIO1[0]	Ю	This signal is the output/input signal of the first group QSPI data 0.
				Data Output/Input Signal of QSPI #1
95	3	SDIO1[1]	Ю	This signal is the output/input signal of the first group QSPI data 1.
				Data Output/Input Signal of QSPI #1
1	4	SDIO1[2]	10	This signal is the output/input signal of the first group QSPI data 2.
	_			Data Output/Input Signal of QSPI #1
2	5	SDIO1[3]	Ю	This signal is the output/input signal of the first group QSPI data 3.
				QSPI #2 Serial Clock Signal
25	31	SCK2 PWM0[1]	0	This signal is the clock signal output of the second group SPI and can be used to connect components or modules of external SPI interfaces.
				This pin shares with pin PWM0[1].
		000#		QSPI #2 Chip Selection Signal
24	30	SS2# PWM0[0]	0	This signal is the chip selection output of the second group SPI.
				This pin shares with pin PWM0[0].

Pin # LT7589A	Pin # LT7589B	Pin Name	I/O	Description	
				Data Output/Input Signal of QSPI #2	
26	32	SDIO2[0] PWM0[2]	Ю	This signal is the output/input signal of the second group QSPI data 0.	
				This pin shares with pin PWM0[2].	
		SDIO2[1] PWM0[3]		Data Output/Input Signal of QSPI #2	
27	33		33	Ю	This signal is the output/input signal of the second group QSPI data 1.
				This pin shares with pin PWM0[3].	
				Data Output/Input Signal of QSPI #2	
28	34	SDIO2[2] PWM1[0]		Ю	This signal is the output/input signal of the second group QSPI data 2.
				This pin shares with pin PWM1[0].	
				Data Output/Input Signal of QSPI #2	
30	36	SDIO2[3] PWM1[1]	Ю	This signal is the output/input signal of the second group QSPI data 3.	
				This pin shares with pin PWM1[1].	

6.4 External Flash Signals

Table 6-4: External Flash Signals

Pin # LT7589A	Pin # LT7589B	Pin Name	I/O	Description
45	57	SFCS[1]# GPIOC[4]	10	External Serial Flash #1 Chip Selection Signal This signal is controlled by the LCD controller inside LT7589. If the serial QSPI function is disabled, this pin can be set to GPOC[4], which defaults to input function. Note: Under the serial panel function framework of Levetop Semiconductor, only SFCS[1]# is allowed to be used as the chip selection signal for external QSPI Flash, and SFCS[0]# cannot be used.
44	56	SFCS[0]# GPIOC[3]	Ю	External Serial Flash #0 Chip Selection Signal This signal is controlled by the LCD controller inside LT7589. If the serial QSPI function is disabled, this pin can be set to GPOC[3], which defaults to input function. Note: Under the serial panel function framework of Levetop Semiconductor, this signal cannot be used as the chip selection signal for external QSPI Flash, and SFCS[1]# must be used. SFCS[0]# can only be used when the customer develops it with own code.

Pin # LT7589A	Pin # LT7589B	Pin Name	I/O	Description
				External Serial Flash Clock Signal
46	58	SFCLK GPIOC[0]	Ю	This pin is a serial clock signal output, controlled by the LCD controller inside LT7589, and connected to external Serial Flash or QSPI components.
				If the serial QSPI function is disabled, this pin can be set to GPOC[0] and default to input function.
				QSPI Data Input/Output Signal 0
47	59	XSIO0 GPIOC[1]	Ю	This signal is controlled by the LCD controller inside LT7589, and this data line is connected to an external Serial Flash or QSPI component.
				If the serial SPI function is disabled, this pin can be set to GPOC[1] and default to input function.
		XSIO1 GPIOC[2]		QSPI Data Input/Output Signal 1
48	60		Ю	This signal is controlled by the LCD controller inside LT7589, and this data line is connected to an external Serial Flash or QSPI component.
				If the serial SPI function is disabled, this pin can be set to GPOC[2] and default to input function.
				QSPI Data Input/Output Signal 2
49	61	XSIO2 GPIOC[5]	Ю	This signal is controlled by the LCD controller inside LT7589, and this data line is connected to an external Serial Flash or QSPI component.
				If the serial SPI function is disabled, this pin can be set to GPOC[5] and default to input function.
				QSPI Data Input/Output Signal 3
50	62	XSIO3 GPIOC[6]	10	This signal is controlled by the LCD controller inside LT7589, and this data line is connected to an external Serial Flash or QSPI component.
		XV		If the serial SPI function is disabled, this pin can be set to GPOC[6] and default to input function.

6.5 PWM Signals

Table 6-5: PWM Signals

Pin # LT7589A	Pin # LT7589B	Pin Name	I/O	Description
				LCD PWM#0 Output Signal
	83	LCD_PWM[0] GPIOC[7]	Ю	This signal is controlled by the register of the LCD controller inside LT7589, and is a programmable PWM output signal that can be used to control the backlight or other components of the TFT LCD screen. The output mode of LCD_PWM can be set through the registers of the LCD controller.
				This pin shares with pin GPOC[7].

Pin # LT7589A	Pin # LT7589B	Pin Name	I/O	Description
56	84	LCD_PWM[1]	Ю	LCD PWM#1 Output Signal This signal is controlled by the register of the LCD controller inside LT7589, and is a programmable PWM output signal that can be used to control the backlight or other components of the TFT LCD screen. The output mode of LCD_PWM [1] can be set through the registers of the LCD controller.
24	30	PWM0[0] SS2#	Ю	The PWM0[0] Output Signal Controlled by MCU Can be used as PWM output or GPIO, set by internal MCU registers. This pin shares with pin SS2#.
25	31	PWM0[1] SCK2	Ю	The PWM0[1] Output Signal Controlled by MCU Can be used as PWM output or GPIO, set by internal MCU registers. This pin shares with pin SCK2.
26	32	PWM0[2] SDIO2[0]	Ю	The PWM0[2] Output Signal Controlled by MCU Can be used as PWM output or GPIO, set by internal MCU registers.
27	33	PWM0[3] SDIO2[1]	Ю	This pin shares with pin SDIO2[0]. The PWM0[3] Output Signal Controlled by MCU Can be used as PWM output or GPIO, set by internal MCU registers. This pin shares with pin SDIO2[1].
28	34	PWM1[0] SDIO2[2]	Ю	The PWM1[0] Output Signal Controlled by MCU Can be used as PWM output or GPIO, set by internal MCU registers. This pin shares with pin SDIO2[2].
30	36	PWM1[1] SDIO2[3]	Ю	The PWM1[1] Output Signal Controlled by MCU Can be used as PWM output or GPIO, set by internal MCU registers. This pin shares with pin SDIO2[3].
31	37	PWM1[2]	Ю	The PWM1[2] Output Signal Controlled by MCU Can be used as PWM output or GPIO, set by internal MCU registers.
32	38	PWM1[3]	Ю	The PWM1[3] Output Signal Controlled by MCU Can be used as PWM output or GPIO, set by internal MCU registers.

6.6 USB Signals

Table 6-6: USB Signals

Pin # LT7589A	Pin # LT7589B	Pin Name	I/O	Description
9	13	DP	Ю	USB Data Port (Positive) This is the signal of USB data terminal DP.
10	14	DM	IO USB Data Port (Negative) This is the signal of USB data terminal DM.	

6.7 GPIO and Interrupt Signals

Table 6-7: GPIO and Interrupt Signals

Pin # LT7589A	Pin # LT7589B	Pin Name	I/O	Description
15	20	INT0[0]		Interrupt INT0[0] Signal
13	20	AIN[0]	'	Can be used as an interrupt input or as an analog signal input.
17	22	INT0[1]	ı	Interrupt INT0[1] Signal
1,	22	AIN[1]	'	Can be used as an interrupt input or as an analog signal input.
19	24	INT0[2]	ı	Interrupt INT0[2] Signal
13	24	AIN[2]	'	Can be used as an interrupt input or as an analog signal input.
21	26	INT0[3]	ı	Interrupt INT0[3] Signal
	20	AIN[3]		Can be used as an interrupt input or as an analog signal input.
16	21	INT0[4]		Interrupt INT0[4] Signal
10	21	AIN[4]	•	Can be used as an interrupt input or as an analog signal input.
18	23	INT0[5]		Interrupt INT0[5] Signal
10	23	AIN[5]		Can be used as an interrupt input or as an analog signal input.
20	25	INT0[6]		Interrupt INT0[6] Signal
20	20	AIN[6]	•	Can be used as an interrupt input or as an analog signal input.
22	27	INT0[7]	ı	Interrupt INT0[7] Signal
	21	AIN[7]	•	Can be used as an interrupt input or as an analog signal input.
		INITOTOI		Interrupt INT2[0] Signal
36	42	INT2[0] TXD0	I	Can be used as an interrupt input.
		17.00		This pin shares with pin TXD0.
		INT2[1]		Interrupt INT2[1] Signal
37	43	RXD0	Ю	Can be used as an interrupt input.
				This pin shares with pin RXD0.
		INT2[2]		Interrupt INT2[2] Signal
38	44	TXD1	I	Can be used as an interrupt input.
				This pin shares with pin TXD1.

Pin # LT7589A	Pin # LT7589B	Pin Name	I/O	Description
		INITOIOI	Ю	Interrupt INT2[3] Signal
39	45	INT2[3] RXD1		Can be used as an interrupt input.
		10001		This pin shares with pin RXD1.
		INITOTAL		Interrupt INT2[4] Signal
92	127	INT2[4] TXD2	I	Can be used as an interrupt input.
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		This pin shares with pin TXD2.
		INITOISI		Interrupt INT2[5] Signal
4	7	INT2[5] RXD2	Ю	Can be used as an interrupt input.
				This pin shares with pin RXD2.
		INT2[6]		Interrupt INT2[6] Signal
40	46	CANTX	I	Can be used as an interrupt input.
		CANTA		This pin shares with pin CANTX.
		INT2[7]		Interrupt INT2[7] Signal
41	47	CANRX	Ю	Can be used as an interrupt input.
		CANTX		This pin shares with pin CANRX.
		INT1[0]		Interrup <mark>t INT1[0] Signal</mark>
35	41	CLKOUT	Ю	Can be used as an interrupt input.
		CLKOUT		This pin shares with pin CLKOUT.
14	19	INT1[3]	Ю	Interrupt INT1[3] Signal
'-	13	1141 1[0]		Can be used as an interrupt input.
		INITAGE		Interrupt INT1[6] Signal
34	40	INT1[6]	Ю	Can be used as an interrupt input.
		RSTOUT		This pin shares with pin RSTOUT.
40	40	INIT4[7]	10	Interrupt INT1[7] Signal
42	48	INT1[7]	Ю	Can be used as an interrupt input.
			•	LCD Interrupt Output Signal
	55	LCD_INT#	0	When the interrupt condition set by the LCD controller occurs, this pin becomes low and is used to generate an interrupt
				output to inform the MCU.
				GPIO Output/Input Signals of LCD Controller
, 50, 49, 45,	83, 62, 61, 57,	GPIOC[7]		These signals are controlled by the register of the LCD controller inside LT7589, and the output data of GPOC[7] shares pins with LCD_PWM[0].
44, 48, 47, 46	56, 60, 59, 58	GPIOC[6:0]	Ю	GPOC [6:0] shares pins with {XSIO3, XSIO2, SFC[1] #, SFC[0] #, XSIO1, XSIO0, SFCLK} and can only be used when the functions of LCD_PWM and SPI Master are disabled. The output mode of these pins can be set through the registers of the TFT LCD controller.

Pin # LT7589A	Pin # LT7589B	Pin Name	I/O	Description
80, 63, 79, 78, 70, 69, 62, 61	112, 94, 111, 110, 101, 100, 93, 92	GPIOD[7:0]	Ю	GPIO Output/Input Signals of LCD Controller These signals are controlled by the register of the LCD controller inside LT7589, and the output data of GPOD [7:0] shares pins with {PD[18], PD[2], PD[17], PD[16], PD[9], PD[1], PD[0]}. GPOD[7:0] can only be used when the LCD panel data bus is set to 16 bits. The output mode of these pins can be set through the registers of the TFT LCD controller.
	54~49	LCD_IOA[7:2]	Ю	GPIO Output/Input Signals of LCD Controller The output/input modes of these pins can be set through the registers of the TFT LCD controller.

6.8 ADC Input Signals

Table 6-8: ADC Input Signals

Pin # LT7589A	Pin # LT7589B	Pin Name	I/O	Description
22, 20, 18, 16, 21, 19, 17, 15	27, 25, 23, 21, 26, 24, 22, 20	AIN[7:0] INT0[7:0]	Ю	Analog Input Signals These analog signals are used as ADC analog input channels. When not configured as analog inputs, these signals can also be used for INT0[7:0].

6.9 Miscellaneous Signals

Table 6-9: Miscellaneous Signals

Pin # LT7589A	Pin # LT7589B	Pin Name	I/O	Description
43	77	LCD_WAIT#	0	Waiting for Output Signal When the internal MCU performs read and write control on the LCD control circuit, if it is in a busy state, WAIT # will be set to a low potential to inform the MCU to enter the waiting cycle.
_	125	LCD_CS# NC	ı	LCD Control Circuit Chip Selection Signal LCD_CS# = 0, Represents the command or data read/write cycle of the internal MCU to the LCD control circuit. Note: This pin has already been internally connected to the EBI-CS # of the MCU and must be kept in NC.
91	124	LCD_RST#	I	Reset Input Signal for LCD Control Circuit When RST #=0 and maintains a length greater than 32 clock cycles, LT7586 will generate a reset action.
	126	SCL LCD_RST#	Ю	I2C Clock Signal This signal is used as the clock signal for I2C of MCU or GPIO. Note: This pin should be connected to the LCD_RST# of Pin- 124 to control whether the LCD circuit performs a reset action.

Pin # LT7589A	Pin # LT7589B	Pin Name	I/O	Description
				Flash Programming Clock Signal
4	7	SWDCK RXD2, INT2[5]	1	This input signal is the clock signal used for programming internal flash memory.
		10002, 11112[3]		This pin is also connected to RXD2 and INT2[5], it's a shared pin.
				Flash Programming Data Signal
92	127	SWDIO TXD2, INT2[4]	I	This input signal is used as a data signal for programming internal flash memory.
		17,02, 11112[4]		This pin is also connected to TXD2 and INT2[4], it's a shared pin.
		CLKOUT	0	System Clock Signal Output
35	41			This output signal reflects the internal system clock.
		INT1[0]		When not configured as a clock output, this signal can also be used for INT1[0].
				MCU Reset Output Signal
		DETOLIT	0	This output signal indicates that the internal reset controller is resetting the chip.
34	40	RSTOUT INT1[6]		0 = The chip is in a reset state
				1 = chip not reset state
				When not configured as a reset output, this signal can also be used for INT1[6].
				MCU Reset Input Signal
33	39	RESET#		When RESET#=0, a reset action will be performed on the internal MCU.

6.10 Power and Clock Signals

Table 6-10: Power and Clock Signals

Pin # LT7589A	Pin # LT7589B	Pin Name	I/O	Description	
87	120	LCD_XI	-	LCD Crystal/Clock Signal Input This pin is connected to an external crystal oscillator and serves as the input signal for the crystal oscillator circuit of the internal TFT LCD controller. When using an active crystal oscillator or an external clock signal, it can be input through this pin. Typically, this clock signal is connected to pin "XTAL", and the recommended crystal oscillator frequency (OSC) is 12MHz.	
88	121	LCD_XO	0	LCD Crystal Output This pin is connected to an external crystal oscillator and outputs a signal to the crystal oscillator circuit of the internal TFT controller.	

Pin # LT7589A	Pin # LT7589B	Pin Name	I/O	Description
13	18	OSC32K_XI	32.768Khz Crystal Oscillator Input RTC clock signal, this pin is connected to an externa 32.768Khz crystal oscillator.	
12	17	OSC32K_XO	O RTC clock signal, this pin is connected to an external 32.768Khz crystal oscillator.	
8	12	XTAL	I	USB Clock Signal This pin is connected to an external 12MHz crystal oscillator.
7	10	EXTAL	0	USB Clock Signal This pin is connected to an external 12MHz crystal oscillator.
11	16	VBAT	PWR	3.3V~3.6V Battery Power Input (RTC) An external filtering capacitor must be connected to ensure stable power supply.
53	73	VDD33A	PWR 3.3V Power Input (LCD) Near the pin end, an external 10uF and a 0.1uF filtering capacitor must be connected to ground. Note: This power input should be powered independently and should not be directly connected to VDD33_iO or AVDD.	
5, 29	8, 15, 35	VDD33B	PWR 7. This pin requires an external 1uF and 0.1uF filtering capacitor to be connected to ground and ensure stable power supply.	
51, 52, 54	63, 68, 81	VDD33_IO1	3.3V Power Input (I/O) These pins require an external 2.2uF and 0.1uF filtering capacitor to be connected to ground and ensure stable power supply.	
81	90, 102, 113	VDD33_IO2	PWR 3.3V Power Input (I/O) These pins must be connected to an external 2.2uF and 0.1uF filtering capacitor to ground, and separated from VDD33_IO1 to ensure stable power supply Please refer to the application circuit in Chapter 9.	
23, 89	28, 22	AVDD	PWR	Power Input of Internal Analog Circuit Provide 3.3V voltage, and a 1uF and a 0.1uF filtering capacitor must be externally connected to the ground near the pin end.
6	9	VDD12	PWR	1.2V Core Power Output (MCU) Near the pin end, an external 1uF and a 0.1uF filtering capacitor must be connected to ground.

Pin # LT7589A	Pin # LT7589B	Pin Name	I/O	Description
				1.2V Core Power Output (LCD)
55, 71, 90	64, 70, 123	LCD_V12	PWR	Just connect an external 0.01uF filtering capacitor to ground near the pin end.
	120			Note: The external capacitor should not exceed 0.01uF and should not be connected to VDD12.
96	11, 29, 65, 28	VSS	PWR GND Ground	
	82, 91, 103	VSS_C	PWR Core GND Ground	
				Heat Dissipation Pad
0		Thermal Pad	-	The heat dissipation pads on the back of the LT7589B package must be directly grounded.
			Note: In order to achieve better soldering results, it recommended to refer to the instructions in Figure 8-3 when PCB Layout.	

6.11 GPIO Resources of Different TFT Panels

Table 6-11: LT7589A GPIO Resources

Chip Functions	LT7589A (QFN-96)				
TFT Panel Data	RGB 565 I/F	RGB 888 I/F			
Resolution(Max.)	1280x800	1280x800			
rtesolution(iviax.)	(Serial Protocol Mode)	(Serial Protocol Mode)			
Flash	2MB	2MB			
SRAM	256KB+512KB	256KB+512KB			
Display RAM	16MB	16MB			
USB 2.0	V (DP/DM)	V (DP/DM)			
RTC	V	V			
SCI Communication Port	V (RXD1, TXD1)	V (RXD1, TXD1)			
Ext. SPI Flash	V (758_SF)	V (758_SF)			
Back-Light Control	V (758_PWM1)	V (758_PWM1)			
SWD Programming Port	V (SWD)	V (SWD)			

TP Type IO Port	xTP (1)	СТР	RTP (2)	хТР	СТР	RTP
Total Number of IO Ports	38	34	33	30	26	25
IO Port Type Description	GPIO ⁽²⁾ , GINT, PWM, SCI, QSPI, ADCIN	GPIO ⁽²⁾ , GINT, PWM, SCI, QSPI, ADCIN	GPIO ⁽²⁾ , GINT, PWM, SCI, QSPI, ADCIN	GINT, PWM, SCI, QSPI, ADCIN	GINT, PWM, SCI, QSPI, ADCIN	GINT, PWM, SCI, QSPI, ADCIN

Table 6-12: LT7589B GPIO Resources

Chip Functions	LT7589B (LQFP-128)					
TFT Panel Data	RGB 565 I/F	RGB 888 I/F				
Resolution(Max.)	1280x800 (Serial Protocol Mode)	1280x800 (Serial Protocol Mode)				
Flash	2MB	2MB				
SRAM	256KB+512KB	256KB+512KB				
Display RAM	16MB	16MB				
USB 2.0	V (DP/DM)	V (DP/DM)				
RTC	V	V				
SCI Communication Port	V (RXD1, TXD1)	V (RXD1, TXD1)				
Ext. SPI Flash	V (758_SF)	V (758_SF)				
Back-Light Control	V (758_PWM1)	V (758_PWM1)				
SWD Programming Port	V (SWD)	V (SWD)				

TP Type IO Port	xTP (1)	СТР	RTP (2)	хТР	СТР	RTP
Total Number of IO Ports	46	42	41	38	34	33
IO Port Type Description	GPIO ⁽²⁾ , GINT, PWM, SCI, QSPI,	GPIO ⁽²⁾ , GINT, PWM, SCI, QSPI,	GPIO (2), GINT, PWM, SCI, QSPI,	GPIO, GINT, PWM, SCI, QSPI,	GPIO, GINT, PWM, SCI, QSPI,	GPIO, GINT, PWM, SCI, QSPI,
	ADCIN	ADCIN	ADCIN	ADCIN	ADCIN	ADCIN

Notes:

- (1) XTP means without TP
- (2) Add 8 GPIO
- (3) RTP needs to add an RTP control chip (such as TSC2046)

7. Function Description

The LT7589 integrates a high-performance 32-bit MCU and a TFT LCD graphic display controller (hereinafter referred to as the TFT LCD controller). The main architecture of this MCU is the same as that of the LT32U05 from Levetop Semiconductor, with 2Mbytes of Flash program space and 768Kbytes of SRAM. Its functions can be directly referred to in the LT7589 MCU core specification or application manual. Therefore, the functional part of the 32-bit MCU will not be described in detail in this specification. In addition, the TFT LCD graphics accelerator adopts the LT7586 hardware architecture of Levetop Semiconductor, with 128Mbytes of display memory and JPG decoder. Its connection with the 32-bit MCU is shown in the following figure:

LT7589 LT32U05 32Bit MCU Core EBI_CS# EBI_WR# EBI_RD# EBI_SD[7:0] LT7586 TFT Controller Core CS# WR# RD# SD[7:0]

Figure 7-1: Communication Mode between LT7589 Internal MCU and TFT Graphics Accelerator

When using LT7589 as a Serial Uart TFT controller, its communication mode with the Host control MCU is through the Uart interface. LT7589 has three sets of SCI (Uart) serial ports, and by default, the second set of TXD1 and RXD1 is used to communicate with the main control MCU. As for the development of the internal MCU program of LT7589, please refer to the LT7589 application manual. Levetop Semiconductor also provides a complete development environment or programming tool.

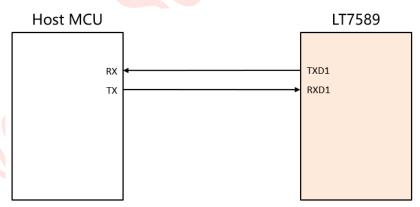


Figure 7-2: Communication Mode with the Host MCU

When developing as a serial Uart TFT Controller, the internal MCU program of LT7589 will provide a serial protocol program. Users can use the UI_Editor software provided by Levetop Semiconductor to import the already designed UI structure flow such as images and animations, and complete the development of TFT display. Basically, there is no need to modify the internal MCU program of LT7589, nor do they need to understand the internal registers and control methods of LT7589. The host control MCU program only needs to send the instruction format of the serial protocol according to the product application, and receive and interpret the feedback information sent by LT7589. Therefore, it saves a lot of time in TFT panel display development work.

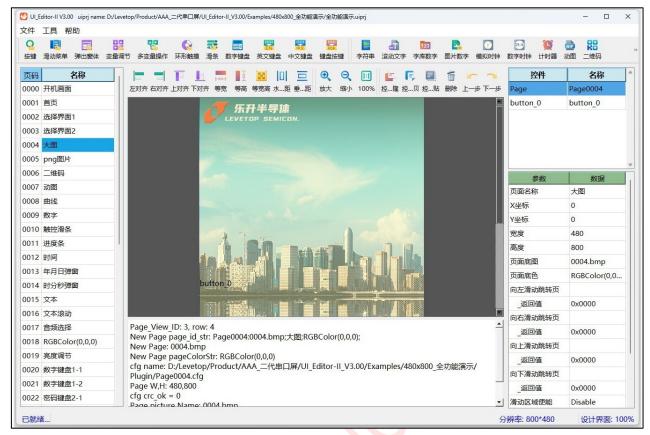


Figure 7-3: The Main Screen of UI Editor Tool

Note: When developing the LT7589 serial Uart TFT Controller, the internal 2Mbytes Flash is used to store the boot program and serial protocol program. During the sample development stage, the samples provided by Levetop Semiconductor will include the boot program, making it convenient for users to update the serial protocol program and develop or modify their own code. During the mass production stage, the chip provided does not include any program (Flash is blank), and users must burn it themselves during production. For code updates and programming, please refer to the LT7589 programming manual.

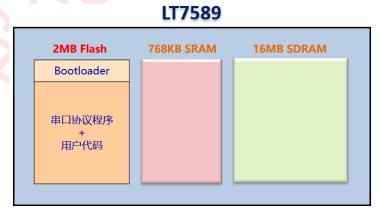


Figure 7-4: LT7589 Internal Memory

LT7589 BFDS EN / V1.3

8. Package Information

8.1 LT7589A (QFN-96pin)

Figure 8-1: QFN-96Pin Outline

Note: When laying out the PCB, the thermal pad zone on the back of LT7589A must be directly grounded.

Millimeter Millimeter **Symbol Symbol** Min. Nom. Max Min. Nom. Max 0.85~ Α 0.80 1.15 Ε 9.90 10.00 10.10 1.10 0.02 0.05 8.05BSC **A**1 Ne 0.13 0.18 0.23 0.40 0.45 b L 0.35 b1 0.12REF E2 8.40 8.50 8.60 0.20 0.25 0.30 0.35 0.40 C 0.18 h D 9.90 10.00 10.10 Nd 8.05BSC D₂ 8.50 8.60 8.40 0.35BSC е

Table 8-1: QFN-96Pin Dimensions

8.2 LT7589B (LQFP-128pin)

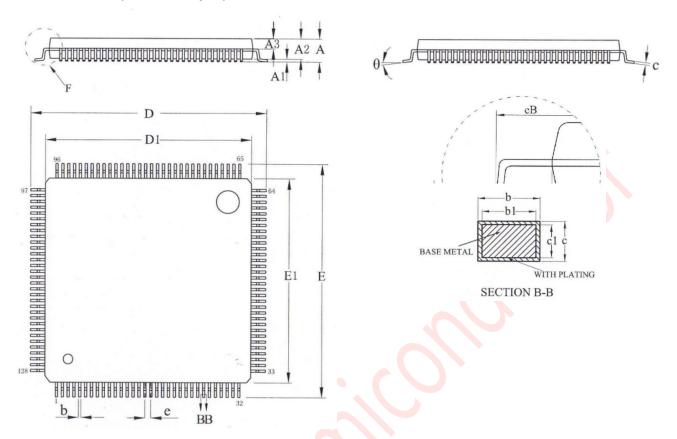


Figure 8-2: LQFP-128Pin Outline

Table 8-2: LQFP-128Pin Dimensions

Symbol	Millimeter			Symbol	Millimeter		
Symbol	Min.	Nom.	Max	Symbol	Min.	Nom.	Max
Α	-		1.60	D1	13.9	14.0	14.1
A 1	0.05	7	0.15	E	15.8	16.0	16.2
A2	1.35	1.40	1.45	E1	13.9	14.0	14.1
A3	0.59	0.64	0.69	eB	15.05	-	15.35
b	0.14	ı	0.22	е	0.40BSC		
b1	0.13	0.16	0.19	L	0.45	-	0.75
С	0.13	-	0.17	L1	1.00REF		
c1	0.12	0.13	0.14	θ	0		7
D	15.8	16.00	16.2				

8.3 LT7589A PCB Layout Suggestions

LT7589A adopts QFN packaging, with ground (GND) heat dissipation pads on the back of the chip. In order to achieve better heat dissipation and reduce soldering risks, it is recommended to divide the PCB copper foil surface of the bottom solder pad of LT7589A into four or more small solder surfaces (square or circular) during PCB layout, and set the interval between each solder surface to~0.8mm to avoid incomplete soldering caused by the use of complete solder surfaces with the same or even larger size than LT7589A solder pads, or chip deformation and poor contact caused by PCB and chip solder pad pulling after solder cooling. The correct PCB pad layout is shown in the following two examples of LT7589A. The light-yellow area in the middle is the grounding pad at the bottom of LT7589A, and the gray area is the PCB grounding small pad (welding surface). Each pad can be grounded 1-2 times through a through-hole.

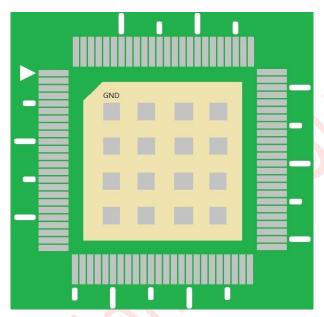


Figure 8-3: Design Suggestion-1 for LT7589A Bottom Pad PCB Layout

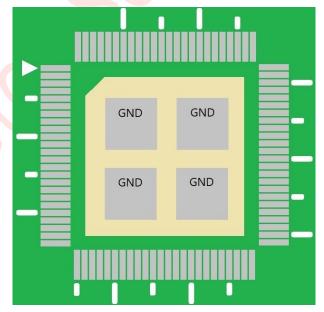


Figure 8-4: Design Suggestion-2 for LT7589A Bottom Pad PCB Layout

9. Application Circuit

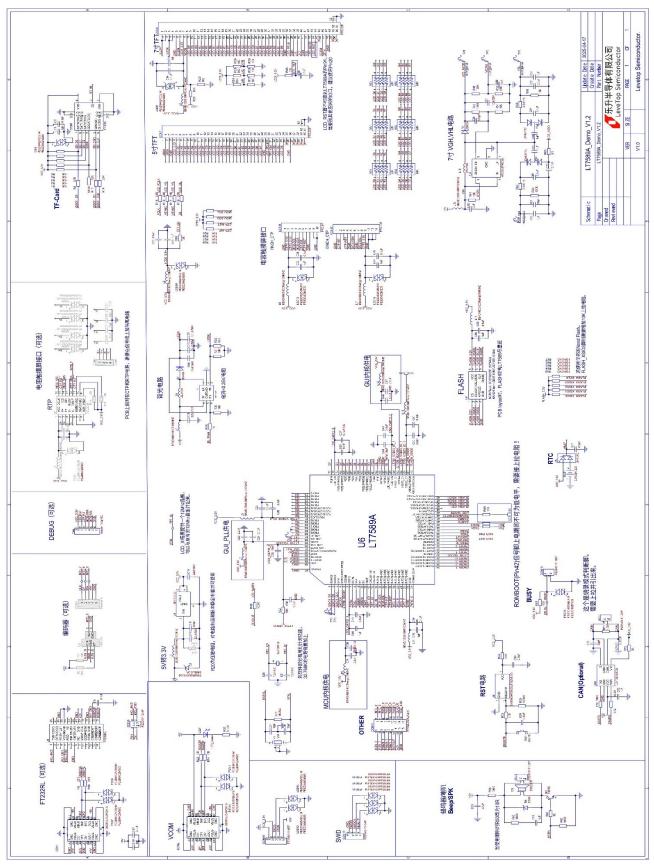


Figure 9-1: LT7589A Application Circuit

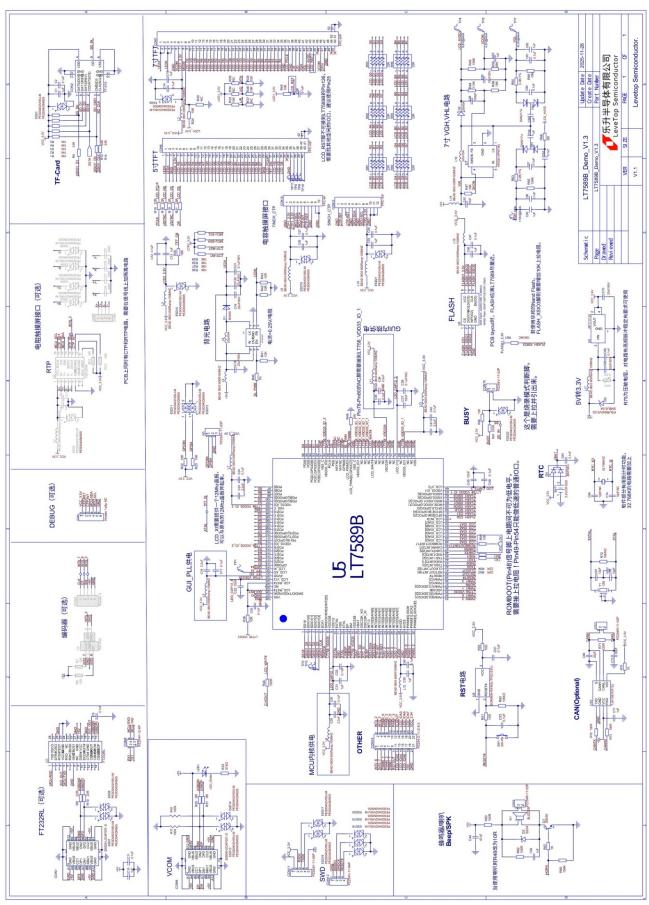


Figure 9-2: LT7589B Application Circuit