

High Performance TFT-LCD Graphics Controller

Data Sheet

V4.2

<u>www.levetop.tw</u> Levetop Semiconductor Co., Ltd.

Contents

1.	Introduction7								
	1.1	Interr	nal Block Diagram	7					
	1.2		em Block Diagram						
	1.3 Model Name								
2.	Feat	tures	ures9						
3.	Pin	Assig	nment	11					
4.	Pin	Desc	ription	13					
	4.1	LT7681/LT7683/LT7686 (128Pin-LQFP)							
		4.1.1	Host Interface Select Signals (3 Pins)						
		4.1.2	Host Parallel I/F Signals (22 Pins)						
		4.1.3	MCU Serial I/F Signals (8 Pins)						
		4.1.4	External Serial Flash / SPI Master Signals (5 Pins)						
		4.1.5	LCD Driver Signals (28 Pins)	16					
		4.1.6	PWM Output Signals (2 Pins)	17					
		4.1.7	GPIO Signals (28 Pins)	18					
		4.1.8	Key-Matrix Signals (10 Pins)	18					
		4.1.9	Power and Clock Signals (23 Pins)	19					
		4.1.10	Reset and Test Signals (4 Pins)	19					
	4.2	LT76	80x-R (68Pin-QFN)	20					
		4.2.1	Host Interface Select Signals (2 Pins)	20					
		4.2.2	Host Serial I/F Signals (5 Pins)	20					
		4.2.3	LCD Driver Signals (22 Pins)	20					
		4.2.4	External Serial Flash / SPI Master Signals (5 Pins)	21					
		4.2.5	PWM Output Signals (2 Pins)	21					
		4.2.6	GPIO Signals (7 Pins)	21					
		4.2.7	Reset (1 Pins)	21					
		4.2.8	Power and Clock Signals (26 Pins)	22					
5.	Elec	trical	l Characteristics	23					
	5.1	Abso	lute Maximum Ratings	23					
	5.2	Static Electrical Characteristics							
	5.3	Abso	lute Maximum Ratings(electrical sensitivity)	25					
6.	Clock and Reset2								
	6.1	Clock	٢	27					
			LT768x_DS_ENG / V4.2						

*T***LT768x**

	6.2	Reset	.30
		6.2.1 Power-on Reset	30
		6.2.2 External Reset	30
		6.2.3 Software Reset	30
7.	Hos	t Interface	31
	7.1	Parallel Host Interface	.33
	7.2	Serial Host Interface	.36
	7.3	Display Input Data Format	.40
		7.3.1 Input Data without Opacity (RGB)	40
		7.3.2 Input Data with Opacity (αRGB)	43
8.	Disp	blay Memory	45
	8.1	Display RAM Data Structure	.46
		8.1.1 8bpp Display Data (RGB 3:3:2)	46
		8.1.2 16bpp Display Data (RGB 5:6:5)	46
		8.1.3 24bpp Display Data (RGB 8:8:8)	46
		8.1.4 Index Display with Opacity (αRGB 2:2:2:2)	47
		8.1.5 12bpp Display with Opacity (αRGB 4:4:4:4)	47
	8.2	Color Palette RAM	.47
9.	LCD	Interface	48
		Interface	
	.Disp		50
	.Disp 10.1	blay Function	50 .50
	.Disp 10.1	olay Function Color Bar	50 .50 .50
	.Disp 10.1	Dlay Function Color Bar Main Window	50 .50 .50 50
	.Disp 10.1	Dlay Function Color Bar Main Window 10.2.1 Configure Display Image Buffer	50 .50 .50 50 51
	.Disp 10.1 10.2	Dlay Function Color Bar Main Window 10.2.1 Configure Display Image Buffer 10.2.2 Write Image Data to Display Image Buffer	50 .50 50 51 51
	.Disp 10.1 10.2	Day Function Color Bar Main Window 10.2.1 Configure Display Image Buffer 10.2.2 Write Image Data to Display Image Buffer 10.2.3 Display Main Window Image	50 .50 50 51 52 .53
	.Disp 10.1 10.2	Dlay Function Color Bar Main Window 10.2.1 Configure Display Image Buffer 10.2.2 Write Image Data to Display Image Buffer 10.2.3 Display Main Window Image Picture-In-Picture (PIP)	50 .50 50 51 52 53 53
	.Disp 10.1 10.2 10.3	Day Function Color Bar Main Window 10.2.1 Configure Display Image Buffer 10.2.2 Write Image Data to Display Image Buffer 10.2.3 Display Main Window Image Picture-In-Picture (PIP) 10.3.1 PIP Window Setting	50 .50 50 51 52 53 53
10	.Disp 10.1 10.2 10.3	Dlay Function Color Bar Main Window 10.2.1 Configure Display Image Buffer 10.2.2 Write Image Data to Display Image Buffer 10.2.3 Display Main Window Image Picture-In-Picture (PIP) 10.3.1 PIP Window Setting 10.3.2 PIP Display Position and PIP Image Position	50 .50 50 51 52 53 53 54 .55
10	.Disp 10.1 10.2 10.3 10.4 .Geo	Dlay Function Color Bar Main Window 10.2.1 Configure Display Image Buffer 10.2.2 Write Image Data to Display Image Buffer 10.2.3 Display Main Window Image Picture-In-Picture (PIP) 10.3.1 PIP Window Setting 10.3.2 PIP Display Position and PIP Image Position Image Rotate and Mirror	50 .50 .50 50 51 52 53 53 54 .55 58
10	.Disp 10.1 10.2 10.3 10.4 .Geo 11.1	Dlay Function Color Bar Main Window 10.2.1 Configure Display Image Buffer 10.2.2 Write Image Data to Display Image Buffer 10.2.3 Display Main Window Image Picture-In-Picture (PIP) 10.3.1 PIP Window Setting 10.3.2 PIP Display Position and PIP Image Position Image Rotate and Mirror Image Rotate and Mirror	50 .50 50 50 51 52 53 53 54 .55 58 58
10	.Disp 10.1 10.2 10.3 10.4 .Geo 11.1 11.2 11.3	Day Function Color Bar Main Window 10.2.1 Configure Display Image Buffer 10.2.2 Write Image Data to Display Image Buffer 10.2.3 Display Main Window Image Picture-In-Picture (PIP) 10.3.1 PIP Window Setting 10.3.2 PIP Display Position and PIP Image Position Image Rotate and Mirror metric Drawing Engine Drawing Circle and Ellipse Drawing Rectangle	50 .50 .50 50 51 52 53 53 54 .55 58 .58 .59 .60
10	.Disp 10.1 10.2 10.3 10.4 .Geo 11.1 11.2 11.3 11.4	Dlay Function Color Bar Main Window 10.2.1 Configure Display Image Buffer 10.2.2 Write Image Data to Display Image Buffer 10.2.3 Display Main Window Image Picture-In-Picture (PIP) 10.3.1 PIP Window Setting 10.3.2 PIP Display Position and PIP Image Position Image Rotate and Mirror metric Drawing Engine Drawing Circle and Ellipse Drawing Rectangle Draw Line	50 .50 .50 50 51 52 .53 54 .55 58 .58 .59 .60 .61
10	.Disp 10.1 10.2 10.3 10.4 .Geo 11.1 11.2 11.3 11.4 11.5	Dlay Function Color Bar Main Window 10.2.1 Configure Display Image Buffer 10.2.2 Write Image Data to Display Image Buffer 10.2.3 Display Main Window Image Picture-In-Picture (PIP) 10.3.1 PIP Window Setting 10.3.2 PIP Display Position and PIP Image Position Image Rotate and Mirror metric Drawing Engine Drawing Circle and Ellipse Drawing Rectangle Drawing Triangle	50 .50 .50 50 51 52 53 53 53 55 58 58 59 60 61 62
10	.Disp 10.1 10.2 10.3 10.4 .Geo 11.1 11.2 11.3 11.4 11.5	Dlay Function Color Bar Main Window 10.2.1 Configure Display Image Buffer 10.2.2 Write Image Data to Display Image Buffer 10.2.3 Display Main Window Image Picture-In-Picture (PIP) 10.3.1 PIP Window Setting 10.3.2 PIP Display Position and PIP Image Position Image Rotate and Mirror metric Drawing Engine Drawing Circle and Ellipse Drawing Rectangle Draw Line	50 .50 .50 50 51 52 53 53 53 55 58 58 59 60 61 62

*T***LT768x**

12.Bloc	k Transfer Engine (BTE)	64
12.1	BTE Basic Settings	66
	Color Palette RAM	
12.3	BTE Operation Overview	68
	12.3.1 MCU Write with ROP	68
	12.3.2 Memory Copy with ROP	68
	12.3.3 Solid Fill	68
	12.3.4 Pattern Fill	68
	12.3.5 Pattern Fill with Chroma Key	68
	12.3.6 MCU Write with Chroma Key	68
	12.3.7 Memory Copy with Chroma Key	68
	12.3.8 MCU Write with Color Expansion	68
	12.3.9 Memory Copy with Color Expansion	69
	12.3.10 Memory Copy with Opacity	69
	12.3.11 MCU Write with Opacity	69
12.4	BTE Memory Access Method	70
12.5	BTE Chroma Key (Transparency Color) Function	70
12.6	BTE Operation Detail	71
	12.6.1 MCU Write with ROP	71
	12.6.2 Memory Copy (move) with ROP	72
	12.6.3 MCU Write with Chroma Key (w/o ROP)	74
	12.6.4 Memory Copy with Chroma Key (w/o ROP)	75
	12.6.5 Pattern Fill with ROP	76
	12.6.6 Pattern Fill with Chroma Key	77
	12.6.7 MCU Write with Color Expansion	78
	12.6.8 MCU Write with Color Expansion and Chroma key	81
	12.6.9 Memory Copy with Opacity	82
	12.6.10 MCU Write with Opacity	86
	12.6.11 Memory Copy with Color Expansion	87
	12.6.12 Memory Copy with Color Expansion and Chroma Key	
	12.6.13 Solid Fill	90
13 Dicr	olay Text	01
-	-	
	Internal CGROM	
13.2	User-defined Character Graphic (UCG) 13.2.1 8*16 UCG Data Format	
	13.2.2 16*16 UCG Data Format	
	13.2.2 16 16 UCG Data Format	
	13.2.3 12 24 UUG Data Format	

	13.2.4 24*24 UCG Data Format	97
	13.2.5 16*32 UCG Data Format	
	13.2.6 32*32 UCG Data Format	
	13.2.7 Initialize CGRAM from MCU	
	13.2.8 Initialize CGRAM from Serial Flash	101
13.3	Character Rotation by 90 Degree	
13.4	Size Enlargement	
13.5	Background Transparency	
	Character Full-Alignment	
	Automatic Line Feed	
13.8	Cursor	
	13.8.1 Text Cursor	104
	13.8.2 Graphic Cursor	106
14.Puls	e Width Modulation (PWM)	108
14.1	PWM Clock Source	
	PWM Output	
15.Seri	al Bus Master	111
15.1	Power-on Display	
	SPI Master	
15.3	Serial Flash Controller	
	15.3.1 External Serial Flash	120
	15.3.2 DMA in Linear Mode for External Serial Flash	121
	15.3.3 DMA in Block Mode for External Serial Flash	
15.4	I2C Master	
16.Key	pad-Scan	127
16.1	Keypad-scan Operation	
	O Interface	
18.Pow	ver Management	132
18.1	Normal Mode	
18.2	Standby Mode	
	Suspend Mode	
18.4	Sleep Mode	
19.Reg	ister Description	134
19.1	Status Register	
	Configuration Registers	

19.3 PLL Setting Register	141
19.4 Interrupt Control Register	143
19.5 LCD Display Control Registers	148
19.6 Geometric Engine Control Registers	159
19.7 PWM Control Registers	168
19.8 Bit Block Transfer Engine (BTE) Control Registers	171
19.9 Serial Flash & SPI Master Control Registers	179
19.10 Text Engine Registers	
19.11 Power Management Control Register	
19.12 Display RAM Control Register	191
19.13 I2C Master Register	
19.14 GPIO Register	197
19.15 Keypad-scan Control Register	199
20.Package Information	201
20.1 LT7681/LT7683/LT7686 (LQFP-128pin)	
20.2 LT7680 (QFN-68pin)	
21.Revision	203
22.Copyright	203

High Performance TFT-LCD Graphics Controller

1. Introduction

LT768x is a series of high-performance TFT-LCD graphic accelerated display controllers. Its main function is to assist MCU to display the contents on the TFT screen. LT768x provides graphic acceleration, PIP (picture-in-picture), geometry graphics and other functions. In addition to enhancing the display efficiency, LT768x can also ease the MCU loading on processing graphic data. LT768x supports 16/18/24-bits RGB interface TFT LCD with various display resolutions ranging from 320*240 (QVGA) to 1280*1024 (SXGA).

LT768x supports a variety of MCU interface, including SPI, I2C serial port, and 8-bit/16-bit parallel interface. In order to achieve multi-layers high-resolution display effect, it has a built-in 128Mb Display RAM, which can support assorted color depths from 1bit per pixel (2 gray shades) to

24bits per pixel (16M color), and alleviate the processing burden on MCU while displaying animation. With built-in geometric drawing engine, LT768X supports drawing points, lines, curves, ellipse, triangle, rectangle, rounded rectangle, and other functions. In addition, LT768x has an embedded hardware graphics acceleration engine (BTE), which provides command-type graphic operations such as screen rotation, flipping, mirroring, PIP and graphics blending, and transparent display. These functions can greatly enhance the display performance, and ease the processing burden on the MCU. Furthermore, users can use SPI interface to connect with MCU, and save the I/O ports of the MCU for other purposes. The powerful display performance of LT768x is ideal for embedded systems with TFT-LCD displays such as home appliances, industrial controls, electronic instruments, medical devices, human-machine interfaces, industrial equipment, inspection equipment, charging stations, multi-function machines, elevator, check-in gate, etc.

1.1 Internal Block Diagram

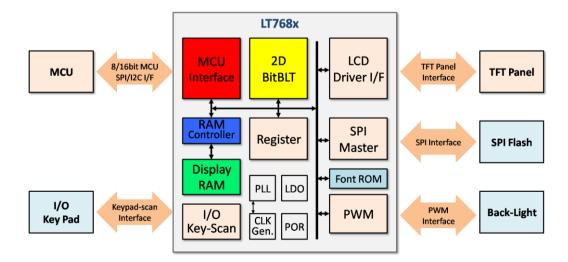


Figure 1-1: Internal Block Diagram

1.2 System Block Diagram

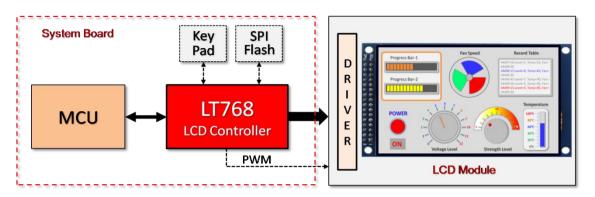


Figure 1-2: LT768x Designed on System Board

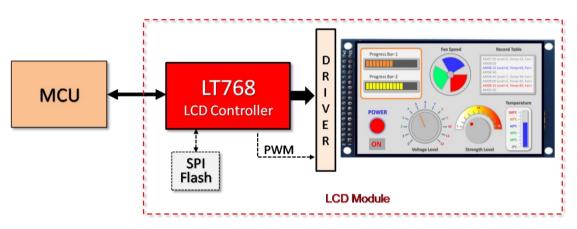


Figure 1-3: LT768x Designed on TFT-LCD Module

1.3 Model Name

Model Name	Package	Embedded Display RAM	Resolution	Colors
LT7681	LQFP-128	128Mb	640*480	16.7M
LT7683	LQFP-128	128Mb	1024*768	16.7M
LT7686	LQFP-128	128Mb	1280*1024	16.7M
LT7680A-R	QFN-68 (8*8)	128Mb	1280*1024	65K / 262K
LT7680B-R	QFN-68 (8*8)	128Mb	480*320	65K / 262K

2. Features

Host Interface

- Support 8/16bits Parallel Interface
 - Intel-8080 Bus Interface
 - Motorola-6800 Bus Interface
- Provide Insert Wait State Mechanism on Parallel Host Cycle
- Support I²C Bus Interface
- Support Various SPI Protocol. Ex. 3 or 4-wire SPI

Display Data Formats

- 1bpp: Monochrome Data (1-bit/Pixel)
- 8bpp: RGB 3:3:2 (1-byte/Pixel)
- 16bpp: RGB 5:6:5 (2-byte/Pixel)
- 24bpp: RGB 8:8:8 (3-byte/Pixel or 4-byte/Pixel)
- Index 2:6 (64 Index Colors/Pixel with Opacity Attribute)
- αRGB 4:4:4:4 (4096 Colors/Pixel with Opacity Attribute)

Support Panel and Resolution

- Support 16/18/24-bits RGB Interface Type Panel
- Support Resolution:
 - > QVGA : 320*240, 16/18/24-bit LCD Panel
 - > WQVGA: 480*272, 16/18/24-bit LCD Panel
 - > VGA : 640*480, 16/18/24-bit LCD Panel
 - > WVGA : 800*480, 16/18/24-bit LCD Panel
 - > SVGA : 800*600, 16/18/24-bit LCD Panel
 - > QHD : 960*540, 16/18/24-bit LCD Panel
 - > WSVGA : 1024*600, 16/18/24-bit LCD Panel
 - > XGA : 1024*768, 16/18/24-bit LCD Panel
 - > SXGA : 1280*1024, 16/18/24-bit LCD Panel

Display Functions

- Multiple Display Buffer: Multi buffering allows the main display window to be switched among buffers. Multi buffering allows a simple animation display to be performed by switching the buffers
- Horizontal/Vertical Flip Display: Vertical Flip display functions are available for image data reads. PIP window will be disabled if flip display function is enabled

- Mirror and Rotation Functions are Available for Image Data Writes
- Provide four User-defined 32*32 Pixels Graphic Cursor
- Virtual Display: Virtual display is available to show an image which is larger than LCD panel size. The image may scroll easily in any direction
- Picture-in-Picture (PIP) Display: Support two PIP windows area: Enabled PIP windows are always displayed on top of Main window. The PIP1 window is always on top of PIP2 window
- Wake-up Display: Wake-up Display is available to quickly show the display data stored in Display RAM. This feature is used when returning from the Standby mode or Suspend mode
- Initial Display: Embedded a tiny processor with 12 instructions to show display data stored in the serial flash without involving external MCU. It will auto execute after power-on, until the program is executed completely, then external MCU will retrieve the control.
- Color Bar: It could display color bar on panel directly. Default resolution is 640 dots by 480 dots

Bit Block Transfer Engine (BTE)

- 2D BTE Engine
- Copy Image with Raster Operators
- Color Depth Conversion
- Solid Fill & Pattern Fill
- Provide User-defined Patterns with 8*8 Pixels or 16*16 Pixels
- Opacity (Alpha-Blend) Control: It blends two images and then generates a new image
 - Chroma-Keying Function: Mixes images with applying the specified RGB color according to the transparency rate
 - Window Alpha-Blending Function: Mixes two images according to the transparency rate in the specified region (fade-in and fade-out functions are available)
 - Dot Alpha-Blending Function: Mixes images according to the transparency rate when the target is a graphic image in the RGB format

Display RAM (Frame Buffer)

- LT7680A-R / 7680B-R: Embedded 128Mb Display RAM
- LT7681 / 7683 / 7686: Embedded 128Mb Display RAM

Shape Drawing Engine

Provide Smart Drawing Features: Line, Rectangle, Triangle, Polygon, Poly-Line, Circle, Ellipse, Arc, and Rounded-Rectangle.

Text Features

- Embedded 8*16, 12*24, 16*32 Character Sets of ISO/IEC 8859-1/2/4/5
- User-defined Characters Support Half Size & Full Size for 8*16, 12*24 and 16*32
- Programmable Text Cursor
- Character Enlargement Function *1, *2, *3, *4 for Horizontal/Vertical Direction
- Support Character to Rotate 90 Degrees

PWM Interface

- Embedded Two 16bits Timers
- One 8-bit Pre-Scalars & One 4bits Divider
- Programmable Duty Control of Output Waveform (PWM)
- Auto Reload Mode or One-Shot Pulse Mode
- Dead-Zone Generator

SPI Master Interface

- Provide DMA Function: Support Direct Data Transfer from External Serial Flash to Frame Buffer
- Compatible with Standard SPI Specifications
- Provide 16bytes Read FIFO and 16bytes Write FIFO
- Provide Interrupt when Tx FIFO is Empty and SPI Tx/Rx Engine is Idle

I2C Interface

 Support Standard Mode (100kbps) and Fast Mode (400kbps)

Key-Matrix Interface

- Support up to 5*5 key matrix
- Programmable Scan Period
- Support Long Key & Repeat Key
- Support up to Two Keys Pressed Simultaneously
- Support Keypad-Scan Wakeup function

Power Saving

- Support Three Kind of Power Saving Mode: Standby, Suspend, and Sleep Mode
- Support Wakeup Function by Host and External Event

Clock Source

Embedded Programmable PLL for Core Clock, LCD Panel's Pixel Clock, and Frame Buffer Clock

Reset

- Provide Power On Reset Automatically
- Accept External Hardware Reset to Synchronize with System
- Software Command Reset

Power Supply

- VDD: 3.3V +/- 0.3V
- Embedded 1.8V LDO

Package

LQFP 100/128-Pins, QFN 68-Pins

Temperature

■ -40°C~85°C

LT768x

3. Pin Assignment

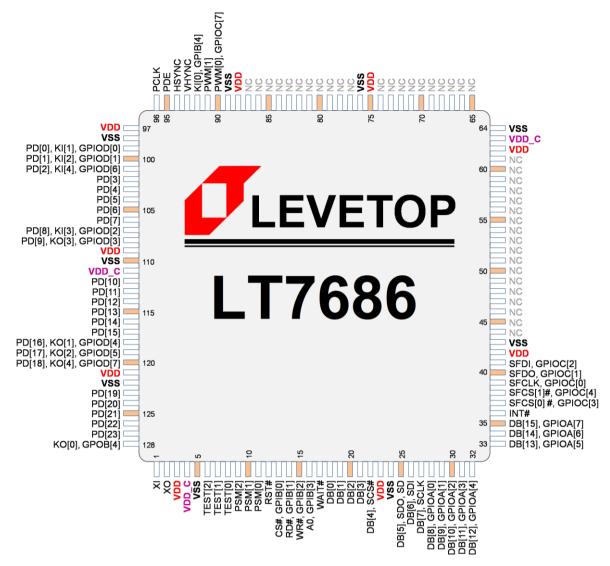


Figure 3-1: LT7681/LT7683/LT7686 Pin Assignment (LQFP-128Pin)

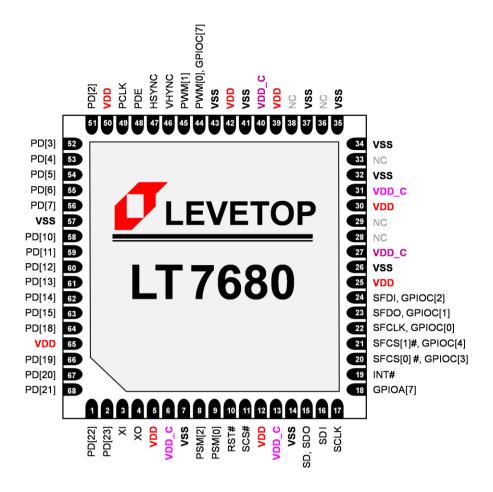


Figure 3-2: LT7680A-R / LT7680B-R Pin Assignment (QFN-68Pin)

4. Pin Description

4.1 LT7681/LT7683/LT7686 (128Pin-LQFP)

LT7681/7683/7686 are 128Pin LQFP type package. The following tables are pin description of these chips.

4.1.1 Host Interface Select Signals (3 Pins)

Pin #	Pin Name	I/O	Pin Description									
			Host li	nterface Sel	ection							
				PSM[2:0]	Host I/F Mode							
	PSM[2:0]			0 0 X	8bits or 16bits 8080 Parallel Interface Mode							
9~11		PSM[2:0]	I	I	I	0 1 X	8bits or 16bits 6800 Parallel Interface Mode					
											100	3-Wire SPI Mode
											101	4-Wire SPI Mode
										1 1 X	I2C Mode	
					set to parallel mode, then PSM[0] pin is used rupt input pin.							

4.1.2 Host Parallel I/F Signals (22 Pins)

Table 4-2: Host Parallel I/F Signals

Pin #	Pin Name	I/O	Pin Description
35~25, 22~18	DB[15:0]	Ю	 Host Data Bus These are data bus for data transfer between Host and LT768x. DB[15:8] will become GPIO (GPIOA[7:0]) when Host does not set to 8080/6800 16-bits data bus mode. DB[7:0] are multiplex pins that share with Serial Host control pins. When Host is set to serial mode, then DB[7:0] are defined as the control pins of serial host. Please refer to Host Interface section.
13	CS# I GPIB[0]		Chip Select Input Low active chip select pin from Host. If host interface is set to serial mode, then this pin can be set as GPIB[0]. This pin has an internal pull-high resistor.
14	RD# EN GPIB[1]	I	 Read / Enable Input RD#: When host interface is set to 8080 mode, this pin is a Read input signal, active low. EN: When host interface is set to 6800 mode, this pin is an Enable input signal, active high. If host interface is set to serial mode, then this pin can be set as GPIB[1]. This pin has an internal pull-high resistor.

Pin #	Pin Name	I/O	Pin Description
15	WR# RW# GPIB[2]	I	 Write / Read-Write Input WR#: When host interface is set to 8080 mode, this pin is a Write input signal, active low. RW#: When host interface is set to 6800 mode, this pin is a Read-Write input signal. It actives high in 'Host's read cycle, and actives low in Host's write cycle. If host interface is set to serial mode, then this pin will be set as GPIB[2]. This pin has an internal pull-high resistor.
16	A0 GPIB[3]	I	Command / Data Select Input The pin is used to select Command or Data cycle. A0 = 0, Status Read or Command Write cycle is selected. A0 = 1, Data Read or Data Write cycle is selected. If host interface is set to serial mode, then this pin will be set as GPIB[3]. This pin has an internal pull-high resistor.
36	INT#	0	Interrupt Output Signal The interrupt output for indicating the status to the host.
17	WAIT#	0	Wait Output Signal When high, it indicates that the LT768x is ready to transfer data. When low, then microprocessor is in wait state.

4.1.3 MCU Serial I/F Signals (8 Pins)

Table 4-3: Host Serial I/F Signals

Pin #	Pin Name	I/O	Pin Description
27	SCLK (DB[7])	L	SPI or I2C Clock SCLK : Clock of 3-wire, 4-wire Serial or I2C interface. This is a multiplex pin that shares with Parallel Host Data Bus DB[7].
26	SDI I2C_SDA (DB[6])	I	 I2C Data / 4-wire SPI Data Input SDI: Data input pin of 4-wire SPI I/F. Connect to MCU's MOSI. I2C_SDA: Bi-direction data pin of I2C I/F. If using 3-Wire serial I/F, please connect this pin to GND. This is a multiplex pin that shares with Parallel Host Data Bus DB[6].
25	SD SDO I2CA[5] (DB[5])	Ю	 3-wire SPI Data / 4-wire SPI Data Output / I2C Slave Address Select SD: Bi-direction data pin of 3-wire SPI I/F. SDO: Data output pin of 4-wire SPI I/F. Connect to MCU's MISO. I2CA[5]: I2C device address bit[5] of I2C I/F. This is a multiplex pin that shares with Parallel Host Data Bus DB[5].

Pin #	Pin Name	I/O	Pin Description
22	SCS# I2CA[4] (DB[4])	I	 SPI Chip Select / I2C Slave Address Select SCS#: Chip select pin for 3-wire and 4-wire serial I/F. I2CA[4]: I2C device address bit[4]. This is a multiplex pin that shares with Parallel Host Data Bus DB[4].
21~18	I2CA[3:0] (DB[3:0])	I	 I2C Slave Address Select I2CA[3:0]: I2C device address bit [3:0]. These pins are not used in 3-Wire or 4-Wire I/F. Please connect them to GND. These are multiplex pins that share with Parallel Host Data Bus DB[3:0].

4.1.4 External Serial Flash / SPI Master Signals (5 Pins)

	Table 4-4: External Serial Flash Signals				
Pin #	Pin Name	I/O	Pin Description		
37	SFCS[0]# GPIOC[3]	Ю	Chip Select 0 for External Serial Flash or SPI device SPI Chip select pin #0 for serial Flash or SPI device. If SPI master I/F is disabled then it can be programmed as GPIOC[3], and its default is input function.		
38	SFCS[1]# GPIOC[4]	Ю	Chip Select 1 for External Serial Flash or SPI device SPI Chip select pin #1 for serial Flash or SPI device. If SPI master I/F is disabled then it can be programmed as GPIOC[4], and its default is input function.		
39	SFCLK GPIOC[0]	Ю	SPI Serial Clock Serial clock output for serial Flash/ROM or SPI device. If SPI master I/F is disabled then it can be programmed as GPIO C[0], and its default is input function.		
40	SFDO GPIOC[1]	Ю	 Master Output Slave Input Single Mode: Data input of serial Flash or SPI device. For LT768x, it is output. Dual Mode: The signal is used as bi-direction data #0(SIO0). Only valid in serial flash DMA mode. If SPI master I/F is disabled, then it can be programmed as GPIO C[1], and its default is input function. 		
41	SFDI GPIOC[2]	Ю	 Master Input Slave Output Single Mode: Data output of serial Flash or SPI device. For LT768, it is input. Dual Mode: The signal is used as bi-direction data #1(SIO1). Only valid in serial flash DMA mode. If SPI master I/F is disabled, then it can be programmed as GPIOC[2], and its default is input function. 		

Table 4-4: External Serial Flash Signals

4.1.5 LCD Driver Signals (28 Pins)

Table 4-5: LCD Driver Signals

Pin #	Pin Name	I/O	Pin Description						
			TFT 64K/2	256K/16.7	a bus outpu	epth by reg	gister settin	768x suppo gs; users c ings.	
				Pin		TFT-LCD	Interface		
				Name	11b (GPIO)	10b (16bits)	01b (18bits)	00b (24bits)	
				PD[0]	GI	PIOD[0] / KI	[1]	B0	
				PD[1]	GI	PIOD[1] / KI	[2]	B1	
				PD[2]	GPIOD[6] / KI[4]	B0	B2	
				PD[3]	GPIOE[0]	B0	B1	B3	
				PD[4]	GPIOE[1]	B1	B2	B4	
				PD[5]	GPIOE[2]	B2	B3	B5	
				PD[6]	GPIOE[3]	B3	B4	B6	
				PD[7]	GPIOE[4]	B4	B5	B7	
				PD[8]	GPIOD[2] / KI[3]		G0		
127~123,	DD[00.0]	IO		PD[9]	GPIOD[3] / KO[3]		G1		
120~112, 108~99	PD[23:0]			PD[10]	GPIOE[5]	G0	G0	G2	
100 00				PD[11]	GPIOE[6]	G1	G1	G3	
				PD[12]	GPIOE[7]	G2	G2	G4	
				PD[13]	GPIOF[0]	G3	G3	G5	
				PD[14]	GPIOF[1]	G4	G4	G6	
				PD[15]	GPIOF[2]	G5	G5	G7	
				PD[16]	GPIOD[4] / KO[1]		D[1]	R0	
				PD[17]	GP	IOD[5] / KC	0[2]	R1	
				PD[18]	GPIOD[7	7] / KO[4]	R0	R2	
				PD[19]	GPIOF[3]	R0	R1	R3	
				PD[20]	GPIOF[4]	R1	R2	R4	
				PD[21]	GPIOF[5]	R2	R3	R5	
				PD[22]	GPIOF[6]	R3	R4	R6	
				PD[23]	GPIOF[7]	R4	R5	R7	
			pins.	If the se		D I/F is 18	Bbpp function	and Key-Mat on mode, th	

Pin #	Pin Name	I/O	Pin Description		
96	PCLK	0	Panel Scan Clock Generic TFT interface signal for panel scan clock. It derives from internal PLL.		
93	VSYNC	0	VSYNC Pulse Generic TFT interface signal for vertical synchronous pulse.		
94	HSYNC	0	HSYNC Pulse Generic TFT interface signal for horizontal synchronous pulse.		
95	PDE	0	Data Enable Generic TFT interface signal for data valid or data enable.		

4.1.6 PWM Output Signals (2 Pins)

Table	4-6:	PWM	Output	Signals
			e aipai	0.9

Pin #	Pin Name	I/O	Pin Description		
90	PWM[0] INITDIS GPIOC[7] CCLK	Ю	 PWM Output 0 / Initial Display Enable PWM[0]: PWM's output signal. The output mode is decided by configuration register. This pin can be used as the control signal of TFT panel's back light. INITDIS: Pull-high this pin will enable Initial Display function. This pin has an internal pull-down, thus the Initial Display function is disabled by default in reset period. If PWM function is disabled, then it can be programmed as GPIO C[7], and the default is GPIOC[7] input function or output Core Clock - CCLK. 		
91	PWM[1]	Ю	PWM Output 1 PWM's output signal. The output mode and output function are decided by configuration register. This pin also can be used as the control signal of TFT panel's back light. When TEST[0] is set to high, then PWM[1] pin is external panel scan clock input		

*T***LT768x**

4.1.7 GPIO Signals (28 Pins)

 Table 4-7: General Purpose I/O Signals

Pin #	Pin Name	I/O	Pin Description		
35~28	GPIOA[7:0]	Ю	GPIO A Group These are general purpose I/O. These are multiplex pins that share with DB[15:8]. They are only available when the host interface is set to 8bits parallel mode or serial mode.		
92, 128, 16~13	GPIB[4], GPOB[4], GPIB[3:0]	Ю	GPIO B Group These are general purpose I/O. GPIB[3:0] are read only and available in serial host mode. GPIB[4] shares the same pin with KI[0]. GPOB[4] shares the same pin with KO[0]. GPIB[3:0] are multiplex pins that share with {A0, WR#, RD# CS#}.		
90, 38, 37, 41~39	GPIOC[7], GPIOC[4:0]	Ю	 GPIO C Group These are general purpose I/O. GPIOC are available when PWM and SPI Master functions are disabled. GPIOC[7] shares the same pin with PWM[0]. GPIOC[4:0] are multiplex pins that share with {SFCS1#, SFCS0#, SFDI, SFDO, SFCLK} 		
120, 101 119, 118 108, 107 100, 99		Ю	 GPIO D Group These are general purpose I/O. GPIOD[7:0] are multiplex pins that share with PD[18, 2, 17, 16, 9, 8, 1, 0]. GPIOD[5,4,3,2,1,0] are available when LCD Panel interface is set to 16bits or 18bits. GPIOD[7,6] are available when LCD Panel interface is set to 16bits. 		

4.1.8 Key-Matrix Signals (10 Pins)

Table 4-8: Key-Matrix Signals

Pin #	Pin Name	I/O	Pin Description
101, 107, 100, 99, 92	KI[4:0] I2CMCK	I	 Key-Matrix Data Pins Keypad data inputs with internal pull-up resister. KI[4:1] are multiplex pins that share with PD[8] and PD[2:0]. The Key-matrix function will be disable when LCD I/F is set to 24bits. KI[0] also provides the I2CMCK function of I2C Master.
120,108, 119,118, 128	KO[4:0] I2CMDA	0	Key-Matrix Strobe Pins Keypad strobe data outputs with Open-Drain. KO[4:1] are multiplex pins that share with PD[9] and PD[18:16]. KO[0] also provides the I2CMDA function of I2C Master.

4.1.9 Power and Clock Signals (23 Pins)

Table 4-9: Power and Clock Signals

Pin #	Pin Name	I/O	Pin Description		
1	XI	I	Crystal / External Clock Input This input pin is used for internal crystal circuit or external clock that generates clock source for PLL. It should be connected to external crystal or clock, and the suggested frequency is 4 ~ 12 MHz.		
2	хо	0	Crystal Output This is an output pin for internal crystal circuit. It should be connected to external crystal circuit.		
4, 63, 111	VDD_C	PWR	Internal LDO Output These pins must connect 1uF and 0.1uF capacitor to ground.		
3, 23, 42, 62, 75, 88, 97, 109, 121	VDD	PWR	3.3V Power Pins		
5, 24, 43, 64, 76, 89 98, 110, 122	VSS	PWR	Ground(GND) Pins		

4.1.10 Reset and Test Signals (4 Pins)

Table 4-10: Reset and Test Signals

Pin #	Pin Name	I/O	Pin Description	
12	RST#	I/O	Reset Signal Input This is an active low Reset pin for LT768x. To avoid noise interferences that cause fake reset behavior, this pin will not be active unless the reset signal lasts at least 256 OSC clocks.	
6~8	TEST[2:0]	Ι	Test Input These pins are used for testing and normally connected to GND. If TEST[0] keeps high, the internal PLL will be disable and the system clock is supplied by external clock. If TEST[2:1] keep 01b, then the SPI Master signals will keep floating. This feature allows external device to program Serial Flash directly. (i.e. ISP, In-System-Programming)	

4.2 LT7680x-R (68Pin-QFN)

LT7680 is a 68Pin QFN type package chip. The following tables are the pin function list. For detail pin descriptions, please refer to the previous section - Pin Description -1.

4.2.1 Host Interface Select Signals (2 Pins)

Pin #	Pin Name	I/O		Pin Description			
	PSM[2]	I	Host Ir	nterface Selection			
				PSM[2] PSM[0]	Host I/F Mode		
8~9	PSM[0]			1 0	3-Wire SPI Mode		
				1 1	4-Wire SPI Mode		
			The PS	SM[2] pin must connec	t to Hi.		

4.2.2 Host Serial I/F Signals (5 Pins)

Table 4-12: Host Serial I/F Signals

Pin #	Pin Name	I/O	Pin Description	
17	SCLK	Ι	SPI Clock	
16	SDI	I	4-wire SPI Data Input	
15	SD	10	3-wire SPI Data	
15	SDO	2	4-wire SPI Data Output	
11	SCS#	I	SPI Chip Select	
19	INT#	0	Interrupt Output Signal	

4.2.3 LCD Driver Signals (22 Pins)

Table 4-13: LCD Driver Signals

Pin #	Pin Name	I/O	Pin Description	
2~1,				
68~66,	PD[23:18],			
64,	PD[15:10],	IO	LCD Panel Data Bus	
63~58,	PD[7:2],			
56~51				
49	PCLK	0	Panel Scan Clock	
46	VSYNC	0	VSYNC Pulse	
47	HSYNC	0	HSYNC Pulse	
48	PDE	0	Data Enable	

4.2.4 External Serial Flash / SPI Master Signals (5 Pins)

Table 4-14: External Serial Flash Signals

Pin #	Pin Name	I/O	Pin Description	
21~20	SFCS[1:0]#	10	Chip Select 0 for External Serial Flash or SPI device	
22	SFCLK	10	SPI Serial Clock	
23	SFDO	10	Master Output Slave Input	
24	SFDI	IO	Master Input Slave Output	

4.2.5 PWM Output Signals (2 Pins)

Table 4-15: PWM Output Signals

Pin #	Pin Name	I/O	Pin Description	
45	PWM[0]	Ю	PWM Output 0 / Initial Display Enable	
44	PWM[1]	Ю	PWM Output 1	

4.2.6 GPIO Signals (7 Pins)

Table 4-16: General Purpose I/O Signals

Pin #	Pin Name	I/O	Pin Description	
18	GPIOA[7]	10	GPIO A Group	
44, 21, 20, 24, 23, 22	GPIOC[7] GPIOC[4:0]	IO	GPIO C Group	

4.2.7 Reset (1 Pins)

Table 4-17: Reset Signal

Pin #	Pin Name	I/O	Pin Description
10	RST#	I/O	Reset Signal Input

4.2.8 Power and Clock Signals (26 Pins)

Table 4-18: Power and Clock Signals

Pin #	Pin Name	I/O	Pin Description	
3	XI	I	Crystal / External Clock Input	
4	хо	0	Crystal Output	
6, 13, 27, 31, 40	VDD_C	PWR	Internal LDO Output	
5, 12, 25, 30, 39, 42, 50, 65	VDD	PWR	3.3V Power Pins	
7, 14, 26, 32, 34, 35, 37, 41, 43, 57,	VSS	PWR	Ground(GND) Pins	
	Thermal Pad	-	The back of LT7689 Heat Sink Pad must be grounded.	

5. Electrical Characteristics

5.1 Absolute Maximum Ratings

Table 5-1: Absolute Maximum Ratings

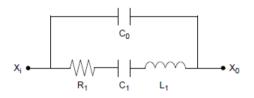
Symbol	Parameter	Value	Unit
V _{DD}	Supply Voltage Range	-0.3 ~ 4.0	V
V _{IN}	Input Voltage Range	-0.3 ~ VDD+0.3	V
V _{OUT}	Output Voltage Range	-0.3 ~ VDD+0.3	V
P _D	Power Dissipation	≦300	mW
T _{OPR}	Operation Temperature Range	-45 ~ 85	°C
T _{ST}	Storage Temperature	-45 ~ 125	°C
T _{SOL}	Soldering Temperature	260	°C

Note:

If used beyond the absolute maximum ratings, LT768x may be permanently damaged. It is strongly recommended that the device is used within the electrical characteristics. If exposed to the condition not within the electrical characteristics, it may affect the reliability of the device. This specification does not guarantee the accuracy of the parameters without a given upper and lower limit value, but it's typical value reasonably reflects the device performance.

5.2 Static Electrical Characteristics

Table 5-2: Electrical Characteristics


Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit		
V _{DD}	System Voltage		3.0	3.3	3.6	V		
C _{VDD}	Loading Capacitor		1	-	10	uF		
I _{OPR}	Operation Current	Note 1		60		mA		
I _{STB}	Standby Mode	Note 1		30		mA		
I _{SUSP}	Suspend Mode	Note 1		10		mA		
I _{SLP}	Sleep Mode	Note 1		7		mA		
T _{RMP}	Power Ramp Up Time	VDD Ramp Up to 3.3 V			35	ms		
OSC / PLL								
F _{osc}	Oscillator Clock	V _{DD} = 3.3 V, Note 2		10		MHz		
F _{VCO}	VCO Output Clock Frequency		100		500	MHz		
T _{LOCK}	Lock Time	Note 3			500	us		
CLK _{MPLL}	MPLL Output Clock (MCLK)	VDD = 3.3 V			133	MHz		
CLK _{CPLL}	CPLL Output Clock (CCLK)	VDD = 3.3 V			100	MHz		
CLK _{PPLL}	PPLL Output Clock (PCLK)	VDD = 3.3 V			80	MHz		
Serial Host Interface								
CLK _{SPI}	SPI Input Clock				50	MHz		

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit		
Input/Output (CMOS 3-state Output pad with Schmitt Trigger Input, Pull-Up/Down)								
V _{IH}	Input High Voltage		2		3.6	V		
V _{IL}	Input Low Voltage		-0.3		0.8	V		
V _{OH}	Output High Voltage		2.4			V		
V _{OL}	Output Low Voltage				0.4	V		
R _{PU}	Pull up Resistance		34	41	64	KΩ		
R _{PD}	Pull down Resistance		33	44	79	KΩ		
V _{TP}	Schmitt Trigger Low to High Threshold		1.5		2.1	V		
V _{TN}	Schmitt Trigger High to Low Threshold		0.8		1.3	V		
V _{HVS}	Hysteresis Voltage		200			mV		
I _{LEAK}	Input Leakage Current		-10		+10	μA		
V _{SLEW}	Rise/Fall Slew Rate			1.5		V/ns		

Note 1: Condition: $V_{DD} = 3.3V$, $T_A = 25 \degree C$

Note 2: Measured on tester with 8 bit MPU interface and without extra load.

Note 3: Parasitic effect when the Crystal Oscillator is used.

Typical: R1 = 50Ω (25-100Ω), L1 = 3.4mH, C1 = 13fF, C0 = 2.8pF

Figure 5-1: Equivalent Circuit

Note 4: Time needed from power-up till the internal PLL have stable clock outputs.

5.3 Absolute Maximum Ratings(electrical sensitivity)

Based on specific criterias, the tests of ESD (HBM, MM) and LU tests are performed to stress the device for determining its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Table 5-3 HBM: Electrostatic discharges (MIL-STD ZAP 3 times, 1sec) are applied to the pins of each sample according to each pin combination. This test conforms to MIL-STD-883G Method 3015.7

Test Model: HBM	ESD Sensitivity Passed: <u>±7000V</u>	MIL-STD Classification Class : <u>3A</u>
Test condition	Passed Volts	Class 0 : < 250V
All other pin to VSS(+)	+8000V	Class 1A : \geq 250V, <499V
All other pin to VSS(-)	-8000V	Class 1B : \geq 500V, <999V
All other pin to VDD(+)	+8000V	Class 1C : \geq 1000V, <1999V
All other pin to VDD(-)	-8000V	Class 2 : ≧2000V, <3999V Class 3A : ≧4000V, <7999V
All other pin to VDD_C(+)	+7000V	Class 3B : \geq 8000V
All other pin to VDD_C(-)	-8000V	
I/O to I/O(+)	+8000V	
I/O to I/O(-)	-8000V	

Table 5-4 MM: Electrostatic discharges (JEDEC ZAP 3 times, 1sec) are applied to the pins of each sample according to each pin combination. This test conforms to JEDEC EIA/JESD22-A115

Test Model: MM	ESD Sensitivity Passed: <u>±400V</u>	JEDEC Classification Class: <u>C</u>
Test condition	Passed Volts	Class A : < 200V
All other pin to VSS(+)	+400V	Class B : ≧200V, <400V
All other pin to VSS(-)	-400V	Class C : \geq 400V
All other pin to VDD(+)	+400V	
All other pin to VDD(-)	-400V	
All other pin to VDD_C(+)	+400V	
All other pin to VDD_C(-)	-400V	
I/O to I/O(+)	+400V	
I/O to I/O(-)	-400V	

Table 5-5 Latch Up: A supply overvoltage (3.5V~5.5V(+), Step: 0.5V(+)) is applied to each power supply pin; and a trigger current (50mA~150mA(±),Step:50mA(±) Limit:2V/3.6V) is applied to each input, output and configurable I/O pin. These tests conform to JEDEC STANDARD NO.78C SEPTMBER 2010

Trigger Model	Test Pin	Tested Result	l Trigger: Class <u>I</u>		
	I/P3.6V		Class I Latch-up testing performed		
	O/P3.6V	DA00.450.04	at room temperature		
I Trigger (+)	O/P1.8V	PASS+150mA			
	I/O3.6V				
	I/P3.6V				
	O/P3.6V				
I Trigger (-)	O/P1.8V	PASS-150mA			
	I/O3.6V				
Over Volt Test	VDD	PASS+5.5V			

Laboratory Ambience Condition:

Temperature: 23±5°C; Relative humidity: 55%±10%(RH)

6. Clock and Reset

6.1 Clock

LT768x has embedded PLL circuits to generate three clock source for internal circuit operations:

- CPLL : Provide **CCLK** for Host interface, BTE Engine, Graphics Engine, and Text DMA data transfer etc...
- MPLL : Provide MCLK for internal Display RAM
- PPLL : Provide **PCLK** for TFT-LCD's Scan Clock.

The three PLL are operation independent. The PLL output frequency is calculated from the following formula:

F_{OUT} = XI * (N / R)÷ OD

In above formula, XI is the external Oscillator / Clock input. The input frequency "XI/R" is no less than 1MHz, and the default value is 1MHz. "R" is Input Divider Ratio, its value is between $2 \sim 31$. "OD" is Output Divider Ratio that must be 1, 2 or 4. "N" is the Feedback Divider Ratio of Loop that indicated by 9bits, and its value is between 2 and 511.

R[4:0]	Input Divider Ratio (R)	N[8:0]	Feedback Divider Ratio (N)
00010	2	00000010	2
00011	3	00000011	3
00101	4	000000101	4
:	:	:	:
:	:	:	:
:	:	:	:
11101	29	111111101	509
11110	30	111111110	510
11111	31	111111111	511

Table 6-1: PLL Register Setting (1)

Table 6-2: PLL Register Setting (2)

OD[1:0]	Input Divider Ratio (OD)
00	1
01	2
10	3
11	4

For example, if XI is 10MHz, R[4:0] is 01010 (i.e. 10), N[8:0] is 100000000 (i.e. 256), OD[1:0] is 11 (i.e. 4), then:

F_{OUT} = 10MHz * (256 / 10)÷ 4 = 64MHz

The design rules of the three clocks are::

LT768x

CCLK * 2 > = MCLK >= CCLK
 CCLK >= PCLK * 1.5

In general, TFT manufacturers will advise the Pixel Clock(PCLK) for the best display effect, based on their TFT characteristics. Therefore, users can setup the register according to the requirements of the PCLK, and then apply the above rules to set up CCLK and MCLK. The PLL (Fout) should be set according to the LCD panel resolution.

For example, if the LCD panel resolution is 640*480, and the recommended PCLK = 20MHz, then users may set MCLK = 40MHz, CCLK = 40MHz. The PLL output and the register settings will be as following:

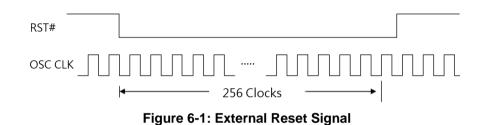
PCLK = XI * (N / R) ÷ OD = 10MHz * (80 / 10) ÷ 4 = 20MHz	REG[05h] : OD = 11b, R = 01010b REG[06h] : N = 01010000b
MCLK = XI * (N / R) ÷ OD = 10MHz * (160 / 10) ÷ 4 = 40MHz	REG[07h] : OD = 11b, R = 01010b REG[08h] : N = 10100000b
CCLK = XI * (N / R) ÷ OD = 10MHz * (160 / 10) ÷ 4 = 40MHz	REG[09h] : OD = 11b, R = 01010b REG[0Ah] : N = 10100000b

Another example, if the LCD panel resolution is 800*480, and the recommend PCLK = 25MHz, then users may set MCLK = 50MHz, CCLK = 50MHz. The PLL output and the register settings will be as following:

PCLK = XI * (N / R) ÷ OD = 10MHz * (100 / 10) ÷ 4 = 25MHz	REG[05h] : OD = 11b, R = 01010b REG[06h] : N = 01100100b
MCLK = XI * (N / R) ÷ OD = 10MHz * (200 / 10) ÷ 4 = 50MHz	REG[07h] : OD = 11b, R = 01010b REG[08h] : N = 11001000b
CCLK = XI * (N / R) ÷ OD = 10MHz * (200 / 10) ÷ 4 = 50MHz	REG[09h] : OD = 11b, R = 01010b REG[0Ah] : N = 11001000b

Registers	640*480	800*480
REG[05h], PPLLC1	11010100b	11010100b
REG[06h], PPLLC2	01010000b	01100100b
REG[07h], MPLLC1	11010100b	11010100b
REG[08h], MPLLC2	10100000b	11001000b
REG[09h], CPLLC1	11010100b	11010100b
REG[0Ah], CPLLC1	10100000b	11001000b

Table 6-3: PLL Register Setting Example


6.2 Reset

6.2.1 Power-on Reset

LT768x has an embedded Power-On-Reset (POR) circuit. POR can issue an active low signal to synchronize the whole system through RST# pin. When system power (3.3V) on, the internal reset will be activated for at least 256 OSC clocks until the internal power is stable.

6.2.2 External Reset

External reset signal RST# allows LT768x to synchronize with external systems. The external reset signal must be stabilized for at least 256 OSC clocks to be approved, as shown in Figure 6-1. The MCU should check the BIT1(working mode status indication bit) of the state register STSR before setting up LT768x to ensure that LT768x is currently in "Normal Operating State".

6.2.3 Software Reset

If the Host writes 1 to register REG[00h] bit0, LT768x will be reset by software. The software reset will only reset the internal state machine of LT768x, and the other registers values will not be affected or cleared. After the software reset is complete, the REG[00h] bit0 will be cleared to 0 automatically.

7. Host Interface

LT768x provides 8bits and 16bits parallel modes, serial SPI mode, and I2C mode for the communication with Host. These interface modes are setup by PSM[2:0] pins:

PSM[2:0]	Host Interface				
0 0 X	8bits or 16bits 8080 Parallel Interface Mode				
0 1 X	8bits or 16bits 6800 Parallel Interface Mode				
100	3-Wire SPI Mode				
101	4-Wire SPI Mode				
1 1 X	I2C Mode				

Table 7-1: Host Interface Mode

Because different MCU interfaces cannot be used at the same time, LT768x provides a shared pin mode. When using Serial Mode, the other parallel pins can be set as GPIO pins. Please refer to the following table:

Pin	808	30 I/F	680	00 I/F	SPI	SPI	I2C	
Name	8-bits	16-bits	8-bits	16-bits	3-Wires	4-Wires		
DB[15:8]					GPIOA[0:7]	GPIOA[0:7]	GPIOA[0:7]	
DB[7]					SCLK	SCLK	SCLK	
DB[6]				DB[7:0]	GND	SDI	I2C_SDA	
DB[5]	DB[7:0]	DB[15:0]	DB[7:0]		SD	SDO	I2CA[5]	
DB[4]						SCS#	SCS#	I2CA[4]
DB[3:0]						GND	GND	I2CA[3:0]
CS#	С	:S#	С	:S#	GPIB[0]	GPIB[0]	GPIB[0]	
RD#	R	D#	E	EN	GPIB[1]	GPIB[1]	GPIB[1]	
WR#	W	/R#	R	W#	GPIB[2]	GPIB[2]	GPIB[2]	
A0	ŀ	40	A0		GPIB[3]	GPIB[3]	GPIB[3]	
INT#	IN	IT#	INT#		INT#	INT#	INT#	
WAIT#	W	AIT#	WAIT#					

 Table 7-2: The Pin Definition of Host Interface

When using the Parallel Host mode, 8bits or 16bits mode is determined by the bit0 of Register REG[01h]. When the bit0=0, then 8bits mode is selected. If this bit0=1 then 16bits mode is selected.

LT768x series support different Host interfaces. For example, LT7680 is a 68pin QFN chip , which only supports serial SPI mode. The following table is the list of host interfaces supported by LT768x series:

No.	Host Interface Mode	LT7681 LT7683 LT7686	LT7680A-R LT7680B-R
1	8bits 8080 Parallel Interface Mode	V	
2	16bits 8080 Parallel Interface Mode	V	
3	8bits 6800 Parallel Interface Mode	V	
4	16bits 6800 Parallel Interface Mode	V	
5	3-Wire SPI Mode	V	v
6	4-Wire SPI Mode	V	v
7	I2C Mode	V	

Table 7-3: Host Interface Supporting List of LT768x Series

The Host interface is selected by pins PSM[2:0] except for LT7680. Please refer to previous Table 7-1. LT7680 only supports 3-Wires and 4-Wires SPI mode. For LT7680, the PSM[1] pin is already connected to GND inside the chip, whereas PSM[2] must be pull-up to VDD. When PSM[0] = 0, then the 3-wires Serial SPI mode is selected. When PSM[0] = 1, then the 4-wires serial mode is selected.

7.1 Parallel Host Interface

🗸 LT768x

The followings are the application circuit and timing of 8080/6800 parallel interface:

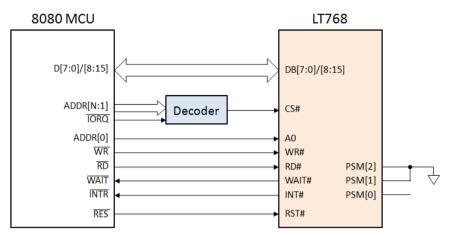


Figure 7-1: 8080 Parallel Mode Interface

The WAIT# signal is used to indicate whether LT768x is ready to transfer data or not. If WAIT# signal is not connected, then the Host access cycle time has to be longer than five CCLK clocks to avoid access fail. If the Host's Reset signal is active low, then it can be connected to RST# of LT768x. The RST# can also be controlled by the I/O pin of host, or be connected to an RC circuit that generate a low pulse. However, to confirm RST#'s active cycle is effective, the signal has to last at least 256 system clock cycle. While using LT768x, Host should first confirm the state register bit1, to find out whether the LT768x is in the standard operating state.

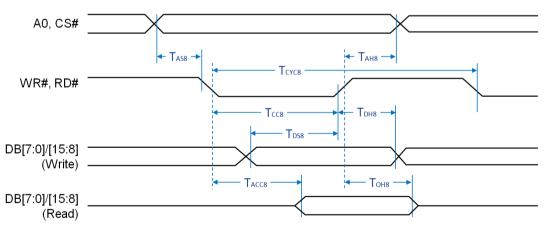
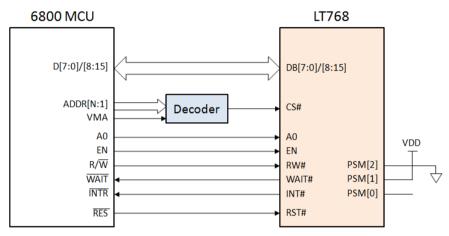
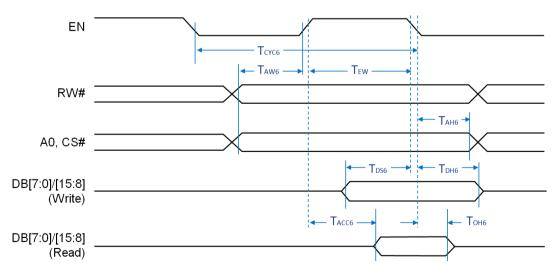




Figure 7-2: 8080 Parallel Mode Interface Timing

Symbol	Parameter	Rating		Unit	Note	
Symbol	Falailletei	Min.	Max.	Onit	Note	
T _{CYC8}	Cycle Time	50		ns		
T _{CC8}	Strobe Pulse Width	20		ns		
T _{AS8}	Address Setup Time	0		ns		
T _{AH8}	Address Hold Time	10		ns	tc is one system clock period:	
T _{DS8}	Data Setup Time	20		ns	tc = $1/SYS_CLK$	
T _{DH8}	Data Hold Time	10		ns		
T _{ACC8}	Data Output Access Time	0	20	ns		
T _{OH8}	Data Output Hold Time	0	20	ns		

Symbol	Parameter	Rating		Unit	Note	
Symbol	i arameter	Min.	Max.	Onic	NOLE	
T _{CYC6}	Cycle Time	50		ns		
T _{EW}	Strobe Pulse Width	20		ns		
T _{AW6}	Address Setup Time	0		ns		
T _{AH6}	Address Hold Time	10		ns	tc is one system clock period:	
T _{DS6}	Data Setup Time	20		ns	tc = 1/SYS_CLK	
T _{DH6}	Data Hold Time	10		ns		
T _{ACC6}	Data Output Access Time	0	20	ns		
T _{OH6}	Data Output Hold Time	0	20	ns		

Table 7-5: 6800 Parallel Mode	Interface Timing Parameter
	internate rinning rarameter

Host accesses LT768x's Registers and Display Memory through the host interface. LT768x has one Status Register and 256 Instruction Registers (i.e. .REG[00h] ~ REG[FF]). The access procedure is as following:

Register Write:

- 1. Address Write: Write the Register's Address. For example, 00h i.e. REG[00h], 01h i.e. REG[01h], 02h i.e. REG[02h]
- 2. Data Write: Write Data to the Register

Register Read:

- 1. Address Write: Write the Register's Address
- 2. Data Write: Read Data from the Register

Displays Memory (Display RAM) is where the TFT screen image data is stored. Host writes data into Display RAM through interface. The procedure of accessing Display RAM is as following:

Display RAM Write:

- 1. Set the Active Window Registers before writing any image data.
- 2. Perform a register write to Graphic R/W Position Register (REG[5Fh] ~ REG[62h]).
- 3. Repeat step 2 until all the Active Window & Graphic R/W Position Coordinates are set.
- 4. Perform an address write to point to Memory Data Port Register (REG[04h])
- 5. Perform data writes to fill the window. Each write to the Memory Data Port will auto-increment the internal memory address.

7.2 Serial Host Interface

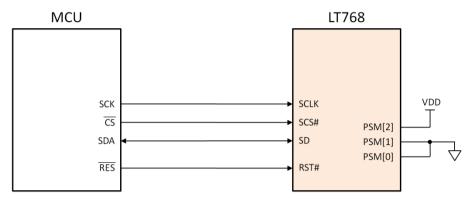


Figure 7-5: 3-Wire SPI Interface

The above circuit is the LT768x's 3-Wires SPI interface with Host. SD signal is a bi-direction data pin for data access. The access timing and procedure are as below:

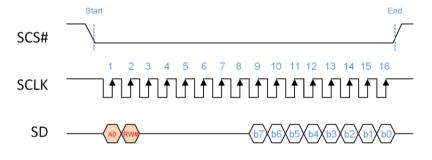


Figure 7-6: 3-Wire SPI Interface Timing

Status Register Read:

- 1. Host drive SCS#(Low) and SCLK(SPI Clock).
- 2. Host drive A0(Low), then drive RW#(High).
- LT768x will drive the Data of Status Register (b7 ~ b0) at 9th ~ 16th Clock. Then Host will get the content of Status Register.

Write Register's Address:

- 1. Host drive SCS#(Low) and SCLK.
- 2. Host drive A0(Low), then drive RW#(Low).
- 3. Host drive the Register's Address (b0 ~ b7) at 9^{th} ~ 16^{th} Clock to LT768x.

Write Data to Register or Memory:

- 1. Host drive SCS#(Low) and SCLK.
- 2. Host drive A0(High), then drive RW#(Low).
- Host drive the Data at 9th ~ 16th Clock to LT768x. i.e. Data will be stored in Register or Memory.

Read Register's Data:

- 1. Host drives SCS#(Low) and SCLK.
- 2. Host drives A0(High), then drives RW#(High).
- LT768x will drive the Data of Register at 9th ~ 16th Clock. Then Host will get the content of Register.

The 4-Wires SPI is almost the same as 3-Wires. The difference is its input and output data lines are separated. The interface circuit diagram and Timing are as follows:

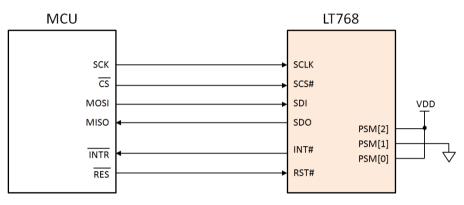


Figure 7-7: 4-Wire SPI Interface

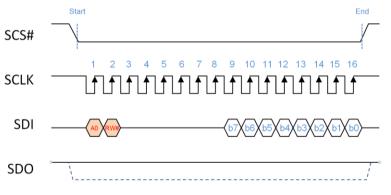


Figure 7-8: 4-Wire SPI Interface Write Timing

The above Timing diagram is the Write Cycle of 4-Wires SPI. When Host drives A0(Low) and RW#(Low), it means Host writes Register's Address. When Host drives A0(High) and RW#(Low), it means Host writes data to Register or Display RAM.

The following Timing diagram is the Read Cycle of 4-Wires SPI. When Host drives A0(Low) and RW#(High), it means Host wants to read the data of Status Register. LT768x will drive the Data of Status Register (b7 ~ b0) at 9th ~ 16th Clock. Then Host will get the data of Status Register. When Host drives A0(High), then RW#(High), it means Host wants to read the data of Command Register. LT768x will drive the Data of Command Register (b7 ~ b0) at 9th ~ 16th Clock for Host. Host will then get the content of Command Register.

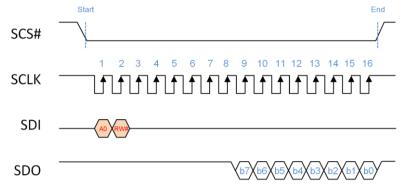


Figure 7-9: 4-Wire SPI Interface Read Timing

The serial I2C interface is similar to 3-Wires SPI interface, yet I2C interface only needs 2 wires for data transfer. The following is the application circuit of I2C interface. Signals I2CA[5:0] are used to setup LT768x's Device ID, and to avoid confusing with other I2C devices. In this example circuit, I2CA[5:3] connect to VDD, and if all DIP Switches are "ON" state, then the I2C Device ID is 111000b. i.e. 38h. Therefore if Host drives I2C timing with "111000b" Device ID, then LT768x will communicate in the I2C cycle time with the Host.

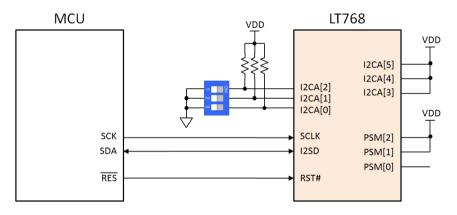


Figure 7-10: I2C Interface

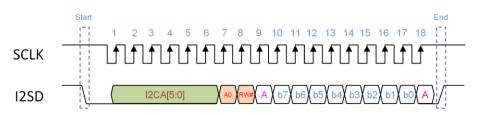


Figure 7-11: I2C Interface Timing

Figure 7-11 is the timing diagram of I2C interface. At first, Host has to find out the Device ID of the I2C device. Then release the Device ID's data in the five clocks of beginning. In the example of Figure 7-10, the Device ID data is 111000. The definition of A0 and RW# are the same as SPI interface. When Host releases A0(High) and RW#(Low), it means Host will write data(b7 ~ b0, at 10th ~ 17th Clock) to Command Register or Display RAM. If Host releases A0(High) and RW#(High), it means Host wants to read data from Command Register. LT768x will release the content(b7 ~ b0) of Command Register on 10th ~ 17th Clock. If Host releases A0(Low) and RW#(High), it means Host wants to read Status Data. LT768x will release the Status Data(b7 ~ b0) on 10th ~ 17th Clock. Host will then get the data of LT768x's Status Register.

7.3 Display Input Data Format

LT768x supports Monochrome, 256 color, 65K color and 16.7M color for TFT panel. The data for RGB colors are arranged in Display RAM as follows:

- 1bpp : Monochrome (1bit/pixel)
- 8bpp : Color RGB 3:3:2 (1 byte/pixel)
- 16bpp : Color RGB 5:6:5 (2bytes/pixel)
- 24bpp : Color RGB 8:8:8 (3bytes/pixel, or 4bytes/pixel)

The following examples are based on 8bits MCU, 16bits MCU, and display color (RGB) in different data format.

7.3.1 Input Data without Opacity (RGB)

Order	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	P ₇	P ₆	P ₅	P ₄	P ₃	P ₂	P ₁	P ₀
2	P ₁₅	P ₁₄	P ₁₃	P ₁₂	P ₁₁	P ₁₀	P ₉	P ₈
3	P ₂₃	P ₂₂	P ₂₁	P ₂₀	P ₁₉	P ₁₈	P ₁₇	P ₁₆
4	P ₃₁	P ₃₀	P ₂₉	P ₂₈	P ₂₇	P ₂₆	P ₂₅	P ₂₄
5	P ₃₉	P ₃₈	P ₃₇	P ₃₆	P ₃₅	P ₃₄	P ₃₃	P ₃₂
6	P ₄₇	P ₄₆	P ₄₅	P ₄₄	P ₄₃	P ₄₂	P ₄₁	P ₄₀

Table 7-6: 8bits MCU, 1bpp Monochrom Mode

Table 7-7: 8bits MCU, 8bpp Mode (RGB 3:3:2)

Order	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	R_0^7	R_0^6	R_0^5	${\sf G_0}^7$	${\sf G_0}^6$	${\sf G_0}^5$	B_0^7	B_0^6
2	R_1^7	R_1^6	R_1^5	${G_1}^7$	G_1^6	G_1^5	B ₁ ⁷	B1 ⁶
3	R_2^7	R_2^{6}	R_2^5	G_2^7	G_2^{6}	G_2^{5}	B ₂ ⁷	B ₂ ⁶
4	R_3^7	R_3^6	R_3^5	G_{3}^{7}	G_3^6	G_3^5	B_3^7	B ₃ ⁶
5	R_4^7	R_4^6	R_4^5	G_4^7	${\sf G_4}^6$	${\sf G_4}^5$	B_4^7	B4 ⁶
6	${\sf R_5}^7$	R_5^6	${\sf R_5}^5$	${\sf G_5}^7$	${\sf G_5}^6$	${\sf G_5}^5$	${\sf B_5}^7$	B_5^6

Table 7-8: 8bits MCU, 16bpp Mode (RGB 5:6:5)

Order	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	G_0^4	G_0^3	G_0^2	B_0^7	B_0^6	B_0^5	B_0^4	B_0^3
2	R_0^7	R_0^6	R_0^5	R_0^4	R_0^3	G_0^7	G_0^6	G_0^5
3	G_1^4	G ₁ ³	G_1^2	B ₁ ⁷	B1 ⁶	B1 ⁵	B1 ⁴	B1 ³
4	R ₁ ⁷	R1 ⁶	R1 ⁵	R_1^4	R ₁ ³	G ₁ ⁷	G_1^6	G1 ⁵
5	G_2^4	G_2^3	G_2^2	B_2^7	B ₂ ⁶	B ₂ ⁵	B_2^4	B ₂ ³
6	R_2^{7}	R_2^6	R_2^5	R_2^4	R_2^3	G_2^7	G_2^{6}	G2 ⁵

Order	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	B_0^7	B_0^6	B_0^5	B_0^4	B_0^3	B_0^2	B_0^1	B_0^0
2	G_0^{7}	G_0^{6}	G_0^5	G_0^4	G_0^{3}	G_0^2	G_0^1	G_0^0
3	R_0^7	R_0^6	R_0^5	${\sf R_0}^4$	R_0^3	R_0^2	R_0^1	R_0^0
4	B1 ⁷	B1 ⁶	B1 ⁵	B1 ⁴	B1 ³	B1 ²	B1 ¹	B1 ⁰
5	G_1^7	G_1^6	G_1^5	G_1^4	G_1^3	G_1^2	G_1^1	G_1^0
6	R_1^7	R_1^6	R_{1}^{5}	R_1^4	R_1^3	R_1^2	R_1^1	R_1^0

Table 7-9: 8bits MCU, 24bpp Mode (RGB 8:8:8)

Table 7-10: 16bits MCU, 1bpp Mono Mode -1

Order	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	P ₇	P ₆	P ₅	P ₄	P ₃	P ₂	P ₁	P ₀
2	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	P ₁₅	P ₁₄	P ₁₃	P ₁₂	P ₁₁	P ₁₀	P ₉	P ₈
3	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	P ₂₃	P ₂₂	P ₂₁	P ₂₀	P ₁₉	P ₁₈	P ₁₇	P ₁₆
4	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	P ₃₁	P ₃₀	P ₂₉	P ₂₈	P ₂₇	P ₂₆	P ₂₅	P ₂₄
5	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	P ₃₉	P ₃₈	P ₃₇	P ₃₆	P ₃₅	P ₃₄	P ₃₃	P ₃₂
6	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	P ₄₇	P ₄₆	P ₄₅	P ₄₄	P ₄₃	P ₄₂	P ₄₁	P ₄₀

Table 7-11: 16bits MCU, 1bpp Mono Mode -2

Order	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	P ₁₅	P ₁₄	P ₁₃	P ₁₂	P ₁₁	P ₁₀	P ₉	P ₈	P ₇	P ₆	P ₅	P4	P ₃	P ₂	P ₁	P ₀
2	P ₃₁	P ₃₀	P ₂₉	P ₂₈	P ₂₇	P ₂₆	P ₂₅	P ₂₄	P ₂₃	P ₂₂	P ₂₁	P ₂₀	P ₁₉	P ₁₈	P ₁₇	P ₁₆
3	P ₄₇	P ₄₆	P ₄₅	P ₄₄	P ₄₃	P ₄₂	P ₄₁	P ₄₀	P ₃₉	P ₃₈	P ₃₇	P ₃₆	P ₃₅	P ₃₄	P ₃₃	P ₃₂
4	P ₆₃	P ₆₂	P ₆₁	P ₆₀	P ₅₉	P ₅₈	P ₅₇	P ₅₆	P ₅₅	P ₅₄	P ₅₃	P ₅₂	P ₅₁	P ₅₀	P ₄₉	P ₄₈
5	P ₇₉	P ₇₈	P ₇₇	P ₇₆	P ₇₅	P ₇₄	P ₇₃	P ₇₂	P ₇₁	P ₇₀	P ₆₉	P ₆₈	P ₆₇	P ₆₆	P ₆₅	P ₆₄
6	P ₉₅	P ₉₄	P ₉₃	P ₉₂	P ₉₁	P ₉₀	P ₈₉	P ₈₈	P ₈₇	P ₈₆	P ₈₅	P ₈₄	P ₈₃	P ₈₂	P ₈₁	P ₈₀

Table 7-12: 16bits MCU, 8bpp Mode -1 (RGB 3:3:2)

Order	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	R_0^7	R_0^6	R_0^5	G_0^7	G_0^{6}	G_0^5	B_0^7	B_0^6
2	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	R_1^7	R_1^6	R_1^5	G ₁ ⁷	G_1^6	G1 ⁵	B ₁ ⁷	B ₁ ⁶
3	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	R_2^7	R_2^6	R_2^5	G_2^7	G_2^{6}	G_2^5	B ₂ ⁷	B ₂ ⁶
4	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	R_3^{7}	R_3^6	R_3^5	G_{3}^{7}	G_{3}^{6}	${\sf G_3}^5$	${\sf B_{3}}^{7}$	B ₃ ⁶
5	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	${\sf R_4}^7$	R_4^6	R_4^5	G_4^7	G_4^6	G4 ⁵	B_4^7	B4 ⁶
6	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	${\sf R_5}^7$	${\sf R_5}^6$	${\sf R_5}^5$	${\sf G_5}^7$	${\sf G_{5}}^{6}$	${\sf G_{5}}^{5}$	${\sf B_{5}}^{7}$	B ₅ ⁶

Order	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	R_1^7	R_1^6	R_1^5	G ₁ ⁷	G_1^6	G1 ⁵	B ₁ ⁷	B1 ⁶	R_0^7	${\sf R_0}^6$	R_0^5	G_0^7	G_0^6	G_0^5	B_0^7	B_0^6
2	R_3^7	R_3^6	R_3^5	${\sf G_3}^7$	G_3^{6}	G ₃ ⁵	B_{3}^{7}	B_3^6	R_2^7	R_2^6	R_2^5	G_2^7	G_2^{6}	G_2^5	B ₂ ⁷	B_2^{6}
3	${\sf R_5}^7$	${\sf R_5}^6$	${\sf R_5}^5$	${G_5}^7$	${\sf G_5}^6$	G ₅ ⁵	${\sf B_5}^7$	B_5^6	R_4^7	R_4^6	${\sf R_4}^5$	G_4^7	G_4^6	G_4^5	B_4^7	B_4^6
4	R_7^7	R_7^6	R_7^5	G ₇ ⁷	G_7^6	G ₇ ⁵	B ₇ ⁷	B ₇ ⁶	R_6^7	${\sf R_6}^6$	${\sf R_6}^5$	${\sf G_6}^7$	G_6^6	G_6^5	B_6^7	B_6^6
5	R_9^7	${\sf R_9}^6$	${\sf R_9}^5$	G_9^{7}	G_9^{6}	G ₉ ⁵	B_9^7	B_9^6	R_8^7	${\sf R_8}^6$	R_8^5	G ₈ ⁷	${\sf G_8}^6$	G ₈ ⁵	B ₈ ⁷	B_8^6
6	R_{11}^{7}	R_{11}^6	${\sf R_{11}}^5$	${G_{11}}^7$	${G_{11}}^{6}$	G ₁₁ ⁵	${B_{11}}^7$	B_{11}^{6}	R_{10}^{7}	R_{10}^{6}	${\sf R_{10}}^5$	${G_{10}}^7$	${G_{10}}^{6}$	${G_{10}}^5$	${B_{10}}^7$	${B_{10}}^{6}$

Table 7-13: 16bits MCU, 8bpp Mode -2 (RGB 3:3:2)

Note: The Mode-1 and Mode 2 is determined by bit[7:6] of Register[02h], please refer to Chapter 19 Reregister Description.

Order	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	R_0^7	R_0^6	R_0^5	R_0^4	R_0^3	G_0^7	G_0^{6}	G_0^{5}	G_0^4	G_0^3	G_0^2	B_0^{7}	B_0^6	${\sf B_0}^5$	B_0^4	B ₀ ³
2	R_1^7	R_1^6	R_1^5	R_1^4	R_1^3	G ₁ ⁷	G_1^6	G1 ⁵	G_1^4	G_1^3	G_1^2	B ₁ ⁷	B1 ⁶	B1 ⁵	B1 ⁴	B ₁ ³
3	R_2^7	R_2^{6}	R_2^{5}	R_2^4	R_2^3	G_2^7	G_2^{6}	G ₂ ⁵	G_2^4	G_2^{3}	G_2^2	B ₂ ⁷	B ₂ ⁶	B ₂ ⁵	B_2^4	B ₂ ³
4	R_3^7	R_3^6	R_3^5	R_3^4	R_3^3	G_3^7	G_3^6	G_3^5	G_3^4	G_3^3	G_3^2	B ₃ ⁷	B_3^6	B_3^5	B_3^4	B ₃ ³
5	R_4^7	R_4^6	R_4^5	R_4^4	R_4^{3}	G_4^7	G_4^{6}	G_4^{5}	G_4^4	G_4^{3}	G_4^2	B ₄ ⁷	B_4^6	B_4^{5}	B_4^4	B ₄ ³
6	${\sf R_5}^7$	R_5^6	R_5^5	R_5^4	R_5^3	G_5^7	${\sf G_5}^6$	${\sf G_5}^5$	G_5^4	G_5^3	G_5^2	B ₅ ⁷	B_5^6	B_5^5	B_5^4	B ₅ ³

Table 7-15: 16bits MCU, 24bpp Mode -1 (RGB 8:8:8)

Order	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	G_0^7	G_0^6	G_0^{5}	G_0^4	G_0^3	G_0^2	G_0^{-1}	G_0^0	B_0^{7}	B_0^6	${\sf B_0}^5$	B_0^4	B_0^{3}	B_0^2	B_0^{1}	B ₀ ⁰
2	B ₁ ⁷	B1 ⁶	B1 ⁵	B1 ⁴	B ₁ ³	B ₁ ²	B ₁ ⁻¹	B ₁ ⁰	R_0^{7}	R_0^6	R_0^5	R_0^4	R_0^3	R_0^2	R_0^{1}	R_0^0
3	R_1^7	R_1^{6}	R ₁ ⁵	R_1^4	R_1^3	R_1^2	R_1^{-1}	R_1^{0}	G ₁ ⁷	G1 ⁶	G1 ⁵	G_1^4	G_1^3	G_1^2	G_1^1	G1 ⁰
4	G ₂ ⁷	G_2^{6}	G ₂ ⁵	G_2^4	G_2^3	G_2^2	G_2^1	G ₂ ⁰	B ₂ ⁷	B ₂ ⁶	B ₂ ⁵	B ₂ ⁴	B_2^3	B ₂ ²	B ₂ ¹	B ₂ ⁰
5	B ₃ ⁷	B_3^6	B ₃ ⁵	B ₃ ⁴	B_3^3	B ₃ ²	B_3^{-1}	B_3^{0}	R_2^{7}	R_2^{6}	R_2^{5}	R_2^4	R_2^3	R_2^2	R_2^1	R_2^0
6	R_3^7	R_3^{6}	R_3^5	R_3^4	R_3^3	R_3^2	R_3^{-1}	R_3^{0}	G_3^7	G ₃ ⁶	G_3^{5}	G_3^4	G_3^3	G_3^2	G_3^1	G_3^0

Table 7-16: 16bits MCU, 24bpp Mode -2 (RGB 8:8:8)

Order	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	G_0^7	G_0^6	G_0^5	G_0^4	G_0^3	G_0^2	G_0^{-1}	G_0^0	B_0^7	B_0^6	${\sf B_0}^5$	B_0^4	B_0^3	B_0^2	B_0^{-1}	B_0^0
2	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	R_0^7	R_0^6	R_0^5	R_0^4	R_0^3	R_0^2	R_0^1	R_0^0
3	G_1^7	G_1^6	G1 ⁵	G_1^4	G_1^3	G_1^2	G_1^1	G_1^0	B ₁ ⁷	B1 ⁶	B1 ⁵	B1 ⁴	B ₁ ³	B ₁ ²	B ₁ ¹	B1 ⁰
4	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	R_1^7	R_1^6	R1 ⁵	R_1^4	R_1^3	R_1^2	R_1^1	R_1^0
5	G ₂ ⁷	G_2^6	G_2^5	G_2^4	G_2^3	G_2^2	G_2^1	G_2^{0}	B ₂ ⁷	B_2^6	B_2^5	B_2^4	B_2^3	B_2^2	B_2^1	B ₂ ⁰
6	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	R_2^7	R_2^6	R_2^5	R_2^4	R_2^3	R_2^2	R_2^{-1}	R_2^0

7.3.2 Input Data with Opacity (αRGB)

T768x

LT768x provides a palette of 64 simultaneous colors from a total of 4096 different colors with opacity attribute for OSD (On-Screen-Display) application. Users may load preferred color into embedded color palette then pick it up by index color. The α value stands for opacity.

Order	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0						
1	α_1^3	α_1^2		In	dex colo	r of pixel	0							
2	α_3^3	α_3^2		In	dex colo	r of pixel	1							
3	α_5^3	α_5^2	Index color of pixel 2											
4	α_7^3	α_7^2		In	dex colo	r of pixel	3							
5	α_9^3	α_9^2		In	dex colo	r of pixel	4							
6	α_{11}^{3}	α_{11}^2		In	dex colo	r of pixel	5							

Table 7-17: 8bits MCU, 8bpp Mode (alndex 2:6)

 $\alpha_x^3 \alpha_x^2$: 0 \rightarrow 100%, 1 \rightarrow 20/32, 2 \rightarrow 11/32, 3 \rightarrow 0

Table 7-18: 8bits MCU, 16bpp Mode (αRGB 4:4:4:4)

Order	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	G_0^{7}	G_0^{6}	G_0^5	G_0^4	B_0^7	B_0^6	B_0^5	B_0^4
2	α_0^3	α_0^2	α_0^1	α_0^0	${\sf R_0}^7$	R_0^6	R_0^5	R_0^4
3	G ₁ ⁷	G_1^6	G1 ⁵	G_1^4	B ₁ ⁷	B1 ⁶	B1 ⁵	B1 ⁴
4	α_1^3	α_1^2	α_1^1	α_1^0	R_1^7	R_1^6	R ₁ ⁵	R ₁ ⁴
5	G_2^7	G_2^{6}	${\sf G_2}^5$	G_2^4	B ₂ ⁷	B ₂ ⁶	B ₂ ⁵	B ₂ ⁴
6	α_2^3	α_2^2	α_2^1	α_2^0	R_2^7	R_2^{6}	R_2^{5}	R_2^4

 $\begin{array}{l} \alpha_{x}^{\ 3} \, \alpha_{x}^{\ 2} \, \alpha_{x}^{\ 1} \, \alpha_{x}^{\ 0} : 0 {\rightarrow} 100\%, \, 1 {\rightarrow} 30/32, \, 2 {\rightarrow} 28/32, \, 3 {\rightarrow} 26/32, \\ 4 {\rightarrow} 24/32, \, \ldots \ldots, \, 12 {\rightarrow} 8/32, \, 13 {\rightarrow} 6/32, \, 14 {\rightarrow} 4/32, \, 15 {\rightarrow} 0. \end{array}$

Order	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	α_0^3	α_0^2		Inde	x colo	r of pi	xel 0	
2	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	α_1^3	α_1^2		Inde	x colo	r of pi	xel 1	
3	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	α_2^3	α_2^2	Index color of pixel 2					
4	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	α_3^3	α_3^2	Index color of pixel 3					
5	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	α_4^3	α_4^2	Index color of pixel 4					
6	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	α_5^3	α_5^2	Index color of pixel 5					

 $\alpha_x^3 \alpha_x^2$: 0 \rightarrow 0, 1 \rightarrow 11/32, 2 \rightarrow 20/32, 3 \rightarrow 100%

Order	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	α_0^3	α_0^2	α_0^1	α_0^0	R_0^7	R_0^6	${\sf R_0}^5$	R_0^4	G_0^7	G_0^6	G_0^5	G_0^4	B_0^7	B_0^6	B_0^5	B_0^4
2	α_1^3	α_1^2	α_1^1	α_1^0	R_1^7	R_1^6	R_1^5	R_1^4	G_1^7	G_1^6	G_1^5	G_1^4	B1 ⁷	B1 ⁶	B1 ⁵	B1 ⁴
3	α_2^3	α_2^2	α_2^1	α_2^0	R_2^7	R_2^6	R_2^5	R_2^4	G_2^7	G_2^{6}	G_2^5	G_2^4	B_2^7	B ₂ ⁶	B ₂ ⁵	B ₂ ⁴
4	α_3^3	α_3^2	α_3^1	α_3^0	R_3^7	R_3^6	${\sf R_3}^5$	R_3^4	G_3^7	G_3^6	G_3^5	G_3^4	B_3^7	B_3^6	B_3^5	B_3^4
5	α_4^3	α_4^2	α_4^1	α_4^0	R_4^7	R_4^6	R_4^5	R_4^4	G_4^7	G_4^{6}	${\sf G_4}^5$	G_4^4	B_4^7	B_4^6	B_4^5	B4 ⁴
6	α_5^3	α_5^2	α_5^1	α_5^0	R_5^7	${\sf R_5}^6$	${\sf R_5}^5$	${\sf R_5}^4$	${\sf G_5}^7$	${\sf G_5}^6$	${\sf G_5}^5$	G_5^4	${\sf B_5}^7$	B_5^6	B_5^5	B_5^4

Table 7-20: 16bits MCU, 12bpp Mode (aRGB 4:4:4:4)

 $\alpha_x^3 \alpha_x^2 \alpha_x^1 \alpha_x^0: 0 \rightarrow 0, 1 \rightarrow 2/32, 2 \rightarrow 4/32, 3 \rightarrow 6/32, 4 \rightarrow 8/32, \dots, 12 \rightarrow 24/32, 13 \rightarrow 26/32, 14 \rightarrow 28/32, 15 \rightarrow 100\%.$

8. Display Memory

LT768x has embedded 128Mb Display RAM. The Host(MCU) can save the displayed data to the internal Display RAM through designated instructions. LT768x's internal display engine will keep reading the image data stored in the Display RAM (first layer only), and sending them to the TFT driver for display. The amount of the image layers is related to the Display RAM capacicy, picture resolution, and color depth, as shown in the following table:

Model	Display RAM	Resolution	Color	Image Layer
Woder	Capacity	(Max.)	(Max.)	(@Max Color)
LT7681	128Mb	640*480	16.7M	18
LT7683	128Mb	1024*768	16.7M	10 (65K)
LT7686	128Mb	1280*1024	16.7M	4
LT7680A-R	128Mb	1280*1024	65K / 262K	6 (65K)
LT7680B-R	128Mb	480*320	65K / 262K	54 (65K)

Table 8-1: LT768x' Model vs. Embedded Display RAM Capacity

The embedded Display RAM of LT768x is a High-Speed SDRAM (Synchronous Dynamic Random Access Memory). Before the Display RAM can be accessed, the relevant register initialization must be done based on the type of Display RAM. Please refer to the initialization steps as followings:

- Setup Register REG[E0h] according to the Display RAM capacity and model. The value of REG[E0h] must be set according to the LT768x model used to avoid display anomalies and image confusion. Please refer to Chapter 19, Table 19-6.
- Setup Register REG[E1H], REG[E2h], REG[E3h] including the CAS latency, refresh interval etc. The typical Display RAM refresh interval is 64ms. The value of these registers are recommended according to the LT768x model used. Please refer to Chapter 19, Table 19-7.
- Set Register REG[E4h] Bit0 to 1, and start Display RAM initialization process.
- Read Register REG[E4h] bit0, if it becomes 1, it means the initialization is complete.

8.1 Display RAM Data Structure

The image data stored in the Display RAM will be stored in different arrangement formats depending on the color (1bpp, 8bpp, 16bpp, 24bpp). Therefore, the Host must write the image data according to these formats, the following tables explain 8/16/24bpp RGB data arrangement format:

8.1.1 8bpp Display Data (RGB 3:3:2)

Addr	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0000h	R_1^7	R_1^{6}	R_1^5	G ₁ ⁷	G_1^6	G1 ⁵	B ₁ ⁷	B1 ⁶	R_0^7	R_0^6	R_0^5	G_0^7	G_0^6	${\sf G_0}^5$	B_0^7	B ₀ ⁶
0002h	R_3^7	R_3^6	R_3^5	G_3^7	G_3^{6}	G ₃ ⁵	B_3^7	B_3^6	R_2^7	R_2^6	R_2^5	G_2^7	G_2^{6}	G ₂ ⁵	B ₂ ⁷	B ₂ ⁶
0004h	R_5^7	R_5^{6}	R_5^5	${\sf G_5}^7$	G_5^{6}	${\sf G_5}^5$	B ₅ ⁷	B_5^{6}	R_4^7	R_4^6	R_4^5	G_4^{7}	G_4^{6}	G ₄ ⁵	B ₄ ⁷	B ₄ ⁶
0006h	R_7^7	R_7^{6}	R_7^{5}	G ₇ ⁷	G ₇ ⁶	G ₇ ⁵	B ₇ ⁷	B ₇ ⁶	R_6^{-7}	R_6^6	${\sf R_6}^5$	${\sf G_6}^7$	G_6^6	${\sf G_6}^5$	B ₆ ⁷	B ₆ ⁶
0008h	${\sf R_9}^7$	R_9^6	R_9^5	G ₉ ⁷	G_9^{6}	G ₉ ⁵	B ₉ ⁷	B_9^6	R_8^7	R_8^6	R_8^5	G ₈ ⁷	G ₈ ⁶	G ₈ ⁵	B ₈ ⁷	B ₈ ⁶
000Ah	R_{11}^{7}	R ₁₁ ⁶	R ₁₁ ⁵	G ₁₁ ⁷	G ₁₁ ⁶	G ₁₁ ⁵	B ₁₁ ⁷	B ₁₁ ⁶	R_{10}^{7}	R ₁₀ ⁶	R ₁₀ ⁵	${G_{10}}^7$	${G_{10}}^{6}$	G ₁₀ ⁵	B ₁₀ ⁷	B ₁₀ ⁶

Table 8-2: 8bpp Display Data (RGB 3:3:2)

8.1.2 16bpp Display Data (RGB 5:6:5)

Table 8-3: 16bpp Display Data (RGB 5:6:5)

Addr	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0000h	R_0^7	R_0^{6}	R_0^{5}	R_0^4	R_0^3	G_0^{7}	G_0^{6}	${\sf G_0}^5$	G_0^4	G_0^{3}	G_0^2	${\sf B_0}^7$	B_0^6	B_0^{5}	B_0^4	B_0^3
0002h	R_1^7	R_1^6	R_1^5	R_1^4	R_1^{3}	G ₁ ⁷	G_1^{6}	G1 ⁵	G_1^4	G_1^{3}	G_1^2	B ₁ ⁷	B1 ⁶	B1 ⁵	B_1^4	B ₁ ³
0004h	R_2^7	R_2^{6}	R_2^{5}	R_2^4	R_2^{3}	G ₂ ⁷	G ₂ ⁶	G_2^{5}	G_2^4	G_2^{3}	G_2^2	B ₂ ⁷	B ₂ ⁶	B ₂ ⁵	B_2^4	B ₂ ³
0006h	R_3^7	R_3^{6}	R_3^5	R_3^4	R_3^{3}	G ₃ ⁷	G_3^{6}	G ₃ ⁵	G_3^4	G_{3}^{3}	G_3^2	B ₃ ⁷	B ₃ ⁶	B ₃ ⁵	B_3^4	B ₃ ³
0008h	R_4^7	R_4^6	R_4^5	R_4^4	${\sf R_4}^3$	G_4^7	G_4^{6}	G_4^5	G_4^4	G_4^3	${\sf G_4}^2$	B_4^{7}	B_4^6	B4 ⁵	B_4^4	B ₄ ³
000Ah	R_5^7	R_5^6	R_5^5	R_5^4	R_5^3	G ₅ ⁷	${\sf G_5}^6$	G_5^5	G_5^4	G_5^3	${\sf G_5}^2$	B ₅ ⁷	B_5^{-6}	B_5^{-5}	B_5^4	B ₅ ³

8.1.3 24bpp Display Data (RGB 8:8:8)

Table 8-4: 24bpp Display Data (RGB 8:8:8)

Addr	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0000h	G_0^7	G_0^{6}	${\sf G_0}^5$	G_0^4	G_0^3	G_0^2	G_0^{-1}	G_0^{0}	${\sf B_0}^7$	B_0^6	B_0^5	B_0^4	B_0^3	B_0^2	B_0^{1}	B_0^0
0002h	B ₁ ⁷	B_1^{6}	B1 ⁵	B1 ⁴	B_1^{3}	B ₁ ²	B_1^{-1}	B_1^{0}	${\sf R_0}^7$	R_0^6	R_0^5	R_0^4	R_0^{3}	${\sf R_0}^2$	R_0^{-1}	R_0^0
0004h	R_1^7	R_1^6	R_1^5	R_1^4	R_1^{3}	R_1^2	R_1^{-1}	R_1^0	G_1^7	G_1^6	G_1^{5}	G_1^4	G_1^3	G_1^2	G_1^1	G_1^0
0006h	G ₂ ⁷	G_2^{6}	G ₂ ⁵	G_2^4	G_2^{3}	G_2^2	G_2^{1}	G_2^{0}	B_2^{7}	B_2^{6}	B_2^{5}	B_2^4	B_2^{3}	B_2^2	B_2^{-1}	B_2^0
0008h	${\sf B_{3}}^{7}$	B_3^6	${\sf B_{3}}^{5}$	B_3^4	B_3^{3}	B_3^2	B_3^{-1}	B_3^0	${\sf R_2}^7$	R_2^6	R_2^{5}	R_2^4	R_2^{3}	${\sf R_2}^2$	R_2^{-1}	R_2^{0}
000Ah	R_3^7	R_3^6	R_3^5	R_3^4	R_3^{3}	R_3^2	R_3^{-1}	R_3^0	G_3^{7}	G_3^{6}	${\sf G_{3}}^{5}$	G_3^4	G_3^3	G_3^2	G_3^{1}	G_3^{0}

8.1.4 Index Display with Opacity (αRGB 2:2:2:2)

	Table 8-5: Index	Display with	Opacity	(αRGB 2:2:2:2)
--	------------------	---------------------	---------	----------------

Addr	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0000h	α_1^3	α_1^2		Inde	x colo	or of pi	xel 1		α_0^3	α_0^2		Inde	x colo	r of pi	xel 0	
0002h	α_3^3	α_3^2		Inde	x colo	r of pi	xel 3		α_2^3	α_2^2		Inde	x colo	r of pi	xel 2	
0004h	α_5^3	α_5^2		Inde	x colo	or of pi	xel 5		α_4^3	α_4^2		Inde	x colo	r of pi	xel 4	
0006h	α_7^3	α_7^2		Inde	x colo	or of pi	xel 7		α_6^3	α_6^2		Inde	x colo	r of pi	xel 6	
0008h	α_9^3	α_9^2		Inde	x colo	or of pi	xel 9		α_8^3	α_8^2		Inde	x colo	r of pi	xel 8	
000Ah	α_{11}^{3}	α_{11}^2		Index	coloi	of pix	el 11		α_{10}^{3}	α_{10}^2		Index	color	of pix	el 10	

 $\alpha_x^{3}\alpha_x^{2}:0{\rightarrow}0,\,1{\rightarrow}11/32,\,2{\rightarrow}20/32,\,3{\rightarrow}100\%$

8.1.5 12bpp Display with Opacity (αRGB 4:4:4:4)

Addr	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0000h	α_0^3	α_0^2	α_0^1	α_0^0	R_0^7	R_0^6	R_0^5	R_0^4	G_0^{7}	G ₀ ⁶	${\sf G_0}^5$	G_0^4	${\sf B_0}^7$	B_0^6	${\sf B_0}^5$	B ₀ ⁴
0002h	α_1^3	α_1^2	α_1^1	α_1^0	R_1^{7}	R_1^6	R_1^{5}	R_1^4	G ₁ ⁷	G1 ⁶	G1 ⁵	G_1^4	B ₁ ⁷	B1 ⁶	B1 ⁵	B1 ⁴
0004h	α_2^3	α_2^2	α_2^1	α_2^0	${\sf R_2}^7$	R_2^{6}	R_2^{5}	R_2^4	${\sf G_2}^7$	G_2^6	G_2^5	${\sf G_2}^4$	B ₂ ⁷	B ₂ ⁶	B ₂ ⁵	B ₂ ⁴
0006h	α_3^3	α_3^2	α_3^1	α_3^0	R_3^{7}	R_3^6	R_3^{5}	R_3^4	G ₃ ⁷	G_3^6	G_3^5	G_3^4	B_3^7	B_3^6	B_3^5	B ₃ ⁴
0008h	α_4^3	α_4^2	α_4^1	α_4^0	R_4^7	R_4^6	R_4^5	R_4^4	${\sf G_4}^7$	${\sf G_4}^6$	${\sf G_4}^5$	G_4^4	B_4^7	B_4^6	B_4^5	B ₄ ⁴
000Ah	α_5^{3}	α_5^2	α_5^1	α_5^{0}	${\sf R_5}^7$	R_5^{6}	R_5^{5}	R_5^4	${\sf G_5}^7$	${\sf G_{5}}^{6}$	${\sf G_{5}}^{5}$	${\sf G_5}^4$	B ₅ ⁷	B_5^{-6}	B_5^{-5}	B ₅ ⁴

Table 8-6: 12bpp Display with Opacity (αRGB 4:4:4:4)

 $\alpha_{x}^{3} \alpha_{x}^{2} \alpha_{x}^{1} \alpha_{x}^{0}: 0 \rightarrow 0, 1 \rightarrow 2/32, 2 \rightarrow 4/32, 3 \rightarrow 6/32, 4 \rightarrow 8/32, \dots, 12 \rightarrow 24/32, 13 \rightarrow 26/32, 14 \rightarrow 28/32, 15 \rightarrow 100\%.$

8.2 Color Palette RAM

· · · · · · · · · · · · · · · · · · ·	1											
Addr	Bit11	Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0000h	R_0^7	${\sf R_0}^6$	R_0^5	R_0^4	G_0^7	G_0^6	${\sf G_0}^5$	G_0^4	B_0^7	B_0^6	B_0^5	B_0^4
0002h	R ₁ ⁷	R_1^6	R1 ⁵	R ₁ ⁴	G ₁ ⁷	G_1^6	G1 ⁵	G_1^4	B ₁ ⁷	B1 ⁶	B1 ⁵	B1 ⁴
0004h	R_2^7	R_2^{6}	R_2^5	R_2^4	G_2^7	G_2^{6}	G_2^{5}	G_2^4	B ₂ ⁷	B ₂ ⁶	B ₂ ⁵	B ₂ ⁴
0006h	R_3^7	R_3^{6}	R_3^5	R_3^4	${\sf G_{3}}^{7}$	G_3^6	${\sf G_{3}}^{5}$	G_3^4	B_3^7	B ₃ ⁶	B_3^5	B ₃ ⁴
0008h	R_4^7	R_4^6	R_4^5	R_4^4	G_4^7	G_4^{6}	${\sf G_4}^5$	G_4^4	B4 ⁷	B4 ⁶	B_4^5	B4 ⁴
000Ah	R_5^7	R_5^6	${\sf R_5}^5$	${\sf R_5}^4$	${G_5}^7$	${\sf G_5}^6$	${\sf G_5}^5$	${\sf G_5}^4$	B_5^7	B_5^6	B_5^5	B_5^4

Table 8-7: Color Palette RAM

9. LCD Interface

LT768x Supports 16, 18, 24bits RGB interface of TFT Panel, no matter the color depth is 24bpp (RGB 8:8:8), 16bpp (RGB 5:6:5) or 8bpp (RGB 3:3:2), the display data can be sent to the TFT Driver on the TFT panel through these RGB interfaces. The LT768x LCD Display data that correspond to the RGB data are shown in the below Table 9-1. The Host can setup REG[01h] Bit[4:3] to select 16bits, 18bits or 24bits resolution.

The RGB data supported by different models of LT768x are also different. For example, when using LT7680A, even if REG[01h] bit[4:3] is set to 00b (24bits), the shown color depth will still be 18bits only. Please refer to Table 9-2 for RGB data supported by different models of LT768x.

	TFT-LCD Interface						
LCD Data Bus	REG[01h] bit[4:3] = 10b (16bits)	REG[01h] bit[4:3] = 01b (18bits)	REG[01h] bit[4:3] = 00b (24bits)				
PD[0]			B0				
PD[1]			B1				
PD[2]		B0	B2				
PD[3]	B0	B1	B3				
PD[4]	B1	B2	B4				
PD[5]	B2	B3	B5				
PD[6]	B3	B4	B6				
PD[7]	B4	B5	B7				
PD[8]			G0				
PD[9]			G1				
PD[10]	G0	G0	G2				
PD[11]	G1	G1	G3				
PD[12]	G2	G2	G4				
PD[13]	G3	G3	G5				
PD[14]	G4	G4	G6				
PD[15]	G5	G5	G7				
PD[16]			R0				
PD[17]			R1				
PD[18]		R0	R2				
PD[19]	R0	R1	R3				
PD[20]	R1	R2	R4				
PD[21]	R2	R3	R5				
PD[22]	R3	R4	R6				
PD[23]	R4	R5	R7				

Table 9-1: RGB Interface VS. RGB Display Data

Model	LCD Data Bus	RGB Signal Number	Colors	
LT7681	PD[23~0]	R:G:B = 8:8:8	16.7M Color	
LT7683	PD[23~0]	R:G:B = 8:8:8	16.7M Color	
LT7686	PD[23~0]	R:G:B = 8:8:8	16.7M Color	
LT7680A	PD[23~18], PD[15~10], PD[7~23]	R:G:B = 6:6:6	262K Color	
LT7680B	PD[23~18], PD[15~10], PD[7~23]	R:G:B = 6:6:6	262K Color	

 Table 9-2: RGB Data Signals of LT768x

Figure 9-1 is the timing diagram of the output signals from LT768x to the TFT-LCD. In addition to the RGB data lines mentioned above, LT768x also provides PCLK (Panel Scan Clock), VSYNC Pulse, HSYNC Pulse and Data Enable signals. The frequency of PCLK is setup by REG[05h] and REG[06h]. Please refer to the description in Section 6.1 and Chapter 19th.

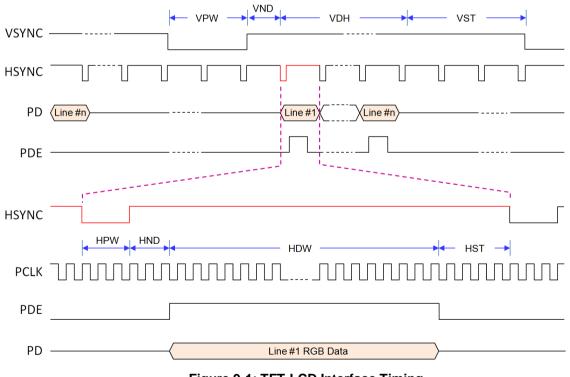


Figure 9-1: TFT-LCD Interface Timing

10. Display Function

10.1 Color Bar

LT768x provides a color bar display, which can be used as a display test and does not require display memory. The function can be performed by setting REG[12h] bit5 to 1.

Figure 10-1: Color Bar

10.2 Main Window

The LCD main window size can be defined by setting Registers REG[14h] ~ REG[1Fh]. Users can save images to memory buffers first. By setting up the related Registers (REG[20h] ~ REG[29h]), users can then show the specific images they want.

10.2.1 Configure Display Image Buffer

Display RAM is used to store images, and how many images can be stored is determined by the image resolution and the color depth. For example, if the image resolution is 800*480, with 65K color (16bits), then 21 images can be stored in 128Mbits Display RAM:

```
Number of Image = (128*1024*1024) / (800*480*16) = 21.8
```

If the image resolution is 480*272, with 65K color (16bits), then 64 image can be stored in 128Mbits Display RAM:

In LT768x, the Starting Position and Width of the Canvas, and the Working window range must be set before writing the image data to Display RAM. Please refer to the description of the registers REG[50H] ~ REG[5Eh] in Chapter 19.

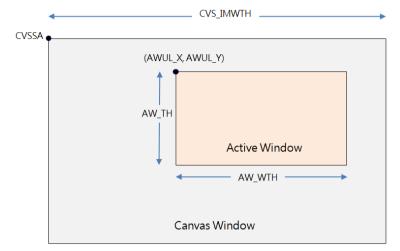


Figure 10-2: Canvas Window and Active Window

10.2.2 Write Image Data to Display Image Buffer

The following diagram is a flowchart about writing image data to Display RAM and displaying the main window image on an LCD screen:

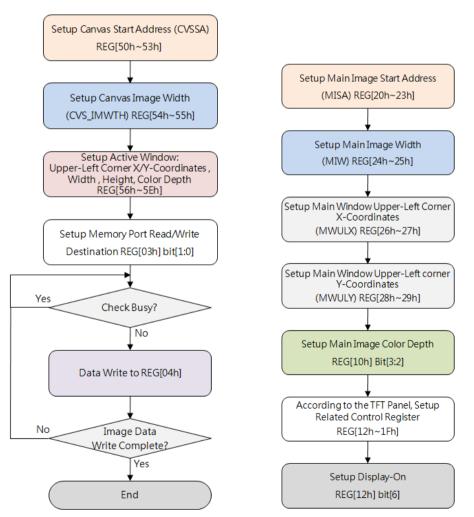


Figure 10-3: Write Image Data to Display Image Buffer

10.2.3 Display Main Window Image

Main window displays the selected image by setting the Registers REG[20h] ~ REG[29h]. The following figure is the process for setting up the main window:

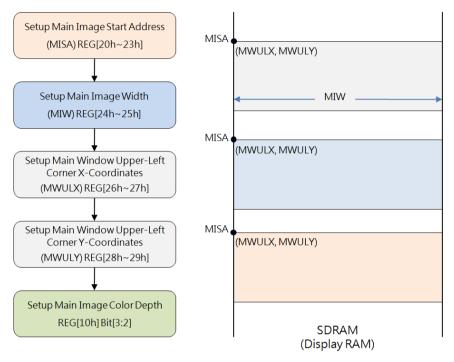


Figure 10-4: Setup and Select Main Window Image

10.3 Picture-In-Picture (PIP)

LT768x supports 2 sets of Picture-in-Picture feature (PIP-1 & PIP-2). Users can display sub-image on the main screen without overwriting the image data of the main display window. If PIP-1 and PIP-2 are overlapping, then the PIP-1 image is always on the top of PIP-2.

The size and location of the picture window is set by the register REG[2Ah] ~ REG[3BH] and REG[11h]. The parameters of PIP-1 and PIP-2 are using the same registers, whereas REG[10H] bit4 is used to decide whether the parameters are for PIP-1 or PIP-2. In addition, before using the PIP function, the relevant parameters of the display window must be set.

The unit of PIP windows sizes and start positions is 4 pixels in horizontal, and 1 pixel in vertical. In PIP mode, LT768x does not support the overlapping of transparent display, and when REG[12h] bit3 VDIR = 1, then the function of PIP windows, graphics cursors, and text cursors will be automatically prohibited.

10.3.1 PIP Window Setting

To apply PIP feature, the Host has to setup the PIP Image Start Address, Image Width, Display X/Y coordinates, Image X/Y coordinates, PIP Windows Color Depth, PIP Window Width and PIP Window Height registers. The following figure is the flowchart for setting the PIP and displaying it on the main window.

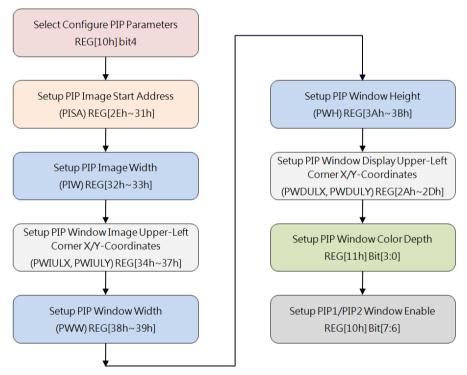


Figure 10-5: Initialize PIP Function

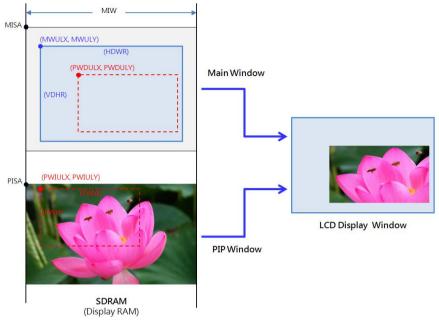
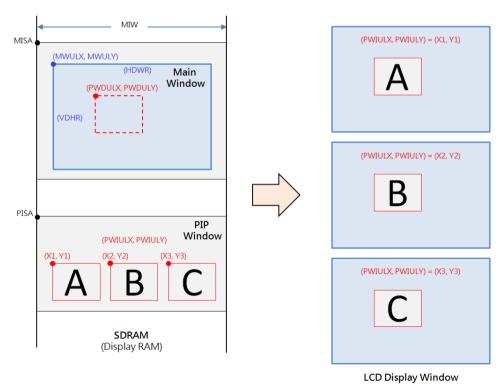



Figure 10-6: PIP Example

10.3.2 PIP Display Position and PIP Image Position

As described in the previous section of the PIP display flowchart, it is known that the final position of the PIP on the LCD screen can be changed by setting up PWDULX and PWDULY. Setting PISA, PIW, PWIULX, PWIULY can change the position of the PIP images that users want to display. These actions do not change any image data that exists in Display RAM, but can easily change the displayed picture on the panel. The following example shows a main window with a PIP window. Users can display different PIP images by changing the PIP Position Register (PWDULX and PWDULY) of the PIP window.

10.4 Image Rotate and Mirror

Usually LCD displays are refreshed horizontally (from left to right and then from top to bottom), and the displayed images are stored in the same way. LT768x provides Rotate and Mirror functions. The rotate feature rotates the displayed image in the counterclockwise direction of 90° or 180°. The mirror feature is the image that is displayed from right to left. LT768x has embedded a hardware controller to execute Rotation and Mirroring features, therefore, it can greately save the Host processing time.

The REG[02H] bit[2:1] are used to control the Memory Store Direction. These two bits are available only for Graphic Mode.

00b: Left \rightarrow Right, then Top \rightarrow Bottom (Original)

01b: Right \rightarrow Left, then Top \rightarrow Bottom (Horizontal flip)

10b: Top \rightarrow Bottom, then Left \rightarrow Right (Rotate right 90°& Horizontal flip)

11b: Bottom \rightarrow Top, then Left \rightarrow Right (Rotate left 90°)

Followings are some examples for Image Rotate and Mirror:

Figure 10-8: Original Image – without Rotation

1. When VDIR (REG[12h] bit3)= 0

When setting REG[02H] bit[2:1] to 00b, its definition is to write image data from left to right and then top to bottom. This will show the original image as Figure 10-8. If setting REG[02H] bit[2:1] to 01b, it means writing image data from right to left and then from top to bottom. So the image displayed will be a horizontal mirror image, as shown in Figure 10-9.

Figure 10-9: Horizontal Mirror Image

When REG[02H] bit[2:1] is set to 10b, it means writing image data from top to bottom and then left to right. So the displayed image will be rotated to the right 90° and then flipped horizontally as shown in Figure 10-10.

Figure 10-10: Rotated to the Right 90° and Flipped Horizontally

When REG[02H] bit[2:1] is set to 11b, the image is written from bottom to top and then left to right. So the display image will rotate 90° to the left as shown in Figure 10-11.

Figure 10-11: Rotate 90° to the Left

2. When VDIR (REG[12h] bit3) = 1,

When REG[02h] bit[2:1] is set to 00b, the display image will be as following Figure:

Figure 10-12: Flip with Vertical LT768x_DS_ENG / V4.2

When REG[02h] bit[2:1] is set to 01b, the display image will be rotated 180°:

Figure 10-13: Rotated 180°

When REG[02h] bit[2:1] is set to 10b, The displayed image will rotate 90° to the left:

Figure 10-14: Rotate 90° to the Left

When REG[02h] bit[2:1] is set to 11b, the display image will be as following Figure:

Figure 10-15: Rotated to the Left 90° then Vertically Mirrored

11. Geometric Drawing Engine

11.1 Drawing Circle and Ellipse

LT768x supports the function of drawing Circles and Ellipses. As long as the Host sets the Circle or the Ellipse Center (REG[7Bh ~ 7Eh]), Radius (REG[77h ~ 7Ah]), and the Color of the Circle (REG[D2h ~ D4h]), then specifies REG[76h] bit[5:4] to 00b, and finally enables the Drawing Circle function (REG[76h] bit7 = 1), then LT768x will draw a Circle or Ellipse on the screen automatically.

Host can also set REG[76h] Bit6 to 1 to fill a Circle or an Ellipse. Therefore, Host does not need to consume many resources to calculate the location or to write series of data to the display memory. An Ellipse has two radius. To draw a Circle, simply set the long radius and short radius to the same value (R1 = R2).

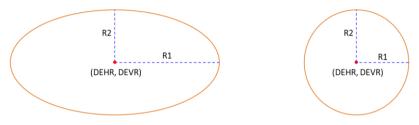


Figure 11-1: Drawing Ellipse and Circle

The flowchart for drawing circles and drawing ellipses is as follows. The left flowchart is to draw a circle or ellipses without fill, and the right flowchart is with fill. Please note the center point of the Circle must be located within the Active Window.

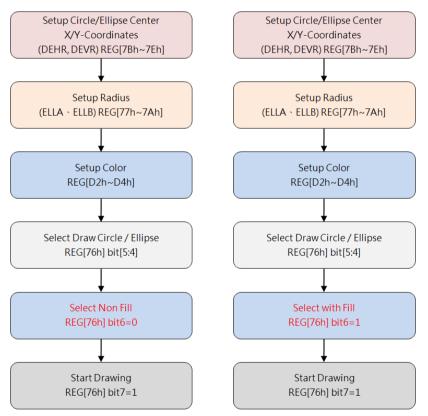


Figure 11-2: Flowchart of Drawing Circle and Ellipse

11.2 Drawing Curve

LT768x supports the function of drawing Curves. As long as the Host sets the Curve Center (REG[7Bh ~ 7Eh]), Radius (REG[77h ~ 7Ah]), and the Color of the Curve (REG[D2h ~ D4h]), then specifies REG[76h] bit[5:4] to 01b, and finally enables the Drawing Curve function (REG[76h] bit7 = 1), then LT768x will draw a one-fourth Curve on the screen automatically.

Figure 11-3: Drawing Curve and one-fourth Ellipse

The flowchart for drawing a Curve or drawing one-fourth Ellipses is as follows. The left flowchart is to draw a Curve or one-fourth Ellipse without fill, and the right flowchart is with fill. Please note the center point of the Curve must be located within the Active Window.

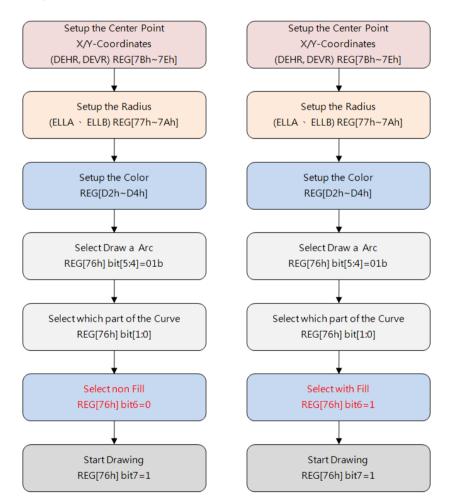


Figure 11-4: Flowchart of Drawing Curve and one-fourth Ellipse

11.3 Drawing Rectangle

To draw a Rectangle, the Host has to set the Start Point Coordinates (REG[68h ~ 6Bh]), Stop Point Coordinates (REG[6Ch ~ 6Fh]), and the Color of the Rectangle (REG[D2h ~ D4h]), then specify REG[76h] bit[5:4] to 10b, and finally enables the drawing function (REG[76h] bit7 = 1), then LT768x will draw a Rectangle on the screen automatically. Host can also set REG[76h] Bit6 to 1 to fill the Rectangle with a specified color.

Start Point	(DLHSR, DLVSR)		
	(DLHER DLVER)		
	Fn	d Point	

Figure 11-5: Drawing Rectangle

The following figure is the flowchart of drawing Rectangles. The left flowchart is to draw a Rectangle without fill, and the right flowchart is with fill. Please note the Start and End points must be located within the Active Window.

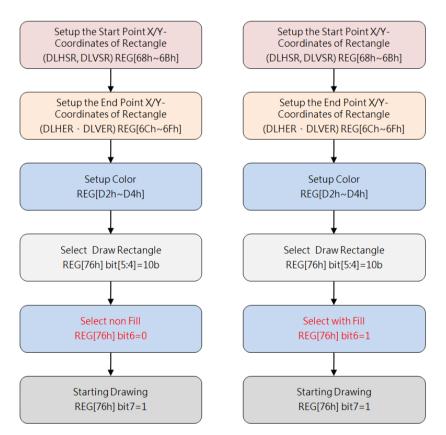


Figure 11-6: Flowchart of Drawing a Rectangle

11.4 Draw Line

To draw a Line, the Host has to set the Start Point Coordinates (REG[68h ~ 6Bh]), End Point Coordinates (REG[6Ch ~ 6Fh]), and the Color of the Line (REG[D2h ~ D4h]), then specify REG[67h] bit1 to 0, and finally enable the Line Drawing function (REG[67h] bit7 = 1), then LT768x will draw a Line on the screen automatically.

The following figure is the flowchart of Line drawing. Please note the Start and End point must be located within the Active Window.

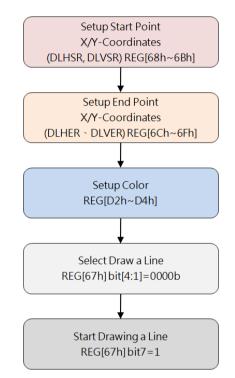


Figure 11-7: Flowchart of Drawing a Line

11.5 Drawing Triangle

To draw a triangle, the Host has to set the 1^{ST} Point Coordinates (REG[68h ~ 6Bh]) of Triangle, the 2^{nd} Point Coordinates (REG[6Ch ~ 6Fh]), 3^{rd} Point Coordinates (REG[70h ~ 73h]), and the Color of the Triangle (REG[D2h ~ D4h]), then specify REG[67h] bit1 to 1, and finally enable the drawing function (REG[67h] bit7 = 1), then LT768x will draw a triangle on the screen automatically. Host can also set REG[67h] bit5 to 1 to fill the Rectangle with a specified color.



Figure 11-8: Drawing Triangle

The following figure is the flowchart of drawing triangles. The left flowchart is to draw a triangle without fill, and the right flowchart is with fill. Please note the three points must be located within the Active Window.

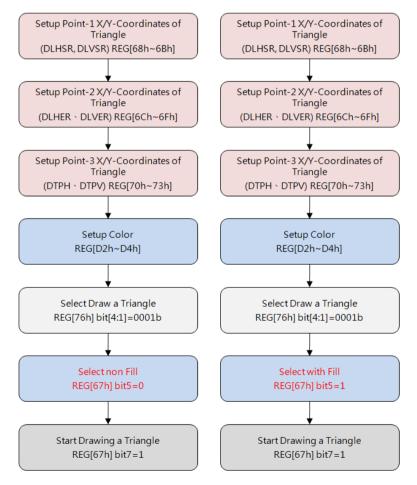


Figure 11-9: Flowchart of Drawing a Triangle

11.6 Drawing Rounded-Rectangle

To draw a rounded-rectangle, the Host has to set the Start Point Coordinates (REG[68h ~ 6Bh]), End Point Coordinates (REG[6Ch ~ 6Fh]), the Rounded Radius (REG[77h ~ 7Ah]), and the Color (REG[D2h ~ D4h]), then specify REG[76h] bit[5:4] to 11b, and finally enable the drawing function (REG[76h] bit7 = 1), then LT768x will draw a rounded-rectangle on the screen automatically. Host can also set REG[76h] Bit6 to 1 to fill the rounded-rectangle with a specified color. The following figure is a schematic of a Rounded-Rectangle, in which the R1 represents the long axis radius, and the R2 represents the short axis radius.

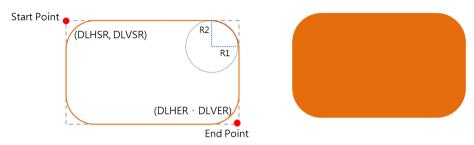


Figure 11-10: Drawing Rounded Triangle

Note1: DLHER-DLHSR must be larger than 2*R1 +1

Note2: DLVER-DLVSR must be larger than 2*R2 +1

The following figure is the flowchart of drawing a rounded-rectangle. The left flowchart is to draw a rounded-rectangle without fill, and the right flowchart is with fill. Please note the Start and End point must be located within the Active Window.

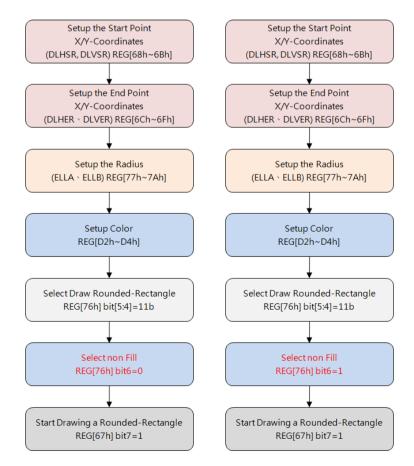


Figure 11-11: Flowchart of Drawing a Rounded-Rectangle

12. Block Transfer Engine (BTE)

LT768x has an embedded high performance hardware engine - Block Transfer Engine (BTE), it is designed to accelerate data Loading, Transferring, and additional Logic Processing. BTE supports 13 basic BTE Operations (Table 12-1), as well as additional functions of Raster Operation (ROP, Table 12-2), Chroma Key, Color Expansion, and so on. After getting properly set and enabled, BTE can perform the required operations and functions automatically and rapidly regardless of MCU. BTE can extremely ease MCU loading and greatly improve the performance for the whole system.

If a data block needs to be loaded, moved, and processed at the same time, users can get it done by BTE. Through BTE, users can implement many functions by the combinations of basic BTE Operations and various available logic combinations of Source and Destination. Once the BTE is properly set and started, it will keep active (busy) until the task is done. There are two ways to get BTE working status, one is to monitor Hardware Interruption: connecting INT# to MCU, once an interrup is issued, the MCU responds and starts the routine to get the Interruption Source by checking REG[0Ch]; the other is to check the corresponding Flag bits of register BTE_CTRL0 (REG[90h]) bit4, or Status Register (STSR) bit3.

BTE Operation Code REG[91h] Bits [3:0]	BTE Operation Description			
0000b	MCU Write with ROP.			
0010b	Memory Copy (move) with ROP.			
0100b	MCU Write with chroma keying (without ROP)			
0101b	Memory Copy (move) with chroma keying (without ROP)			
0110b	Pattern Fill with ROP			
0111b	Pattern Fill with chroma keying (without ROP)			
1000b	MCU Write with Color Expansion (without ROP)			
1001b	MCU Write with Color Expansion and chroma keying (without ROP)			
1010b	Memory Copy with opacity (without ROP)			
1011b	MCU Write with opacity (without ROP)			
1100b	Solid Fill (without ROP)			
1110b	Memory Copy with Color Expansion (without ROP)			
1111b	Memory Copy with Color Expansion and chroma keying (without ROP)			
Other Combinations	Reserved			

Table 12-1: BTE Operation

ROP Function Code REG[91h] bit[7:4]	Function Description (Boolean)	
0000b	0 (Blackness)	
0001b	~S0 · ~S1 or ~ (S0+S1)	
0010b	~S0 · S1	
0011b	~S0	
0100b	S0 · ~S1	
0101b	~S1	
0110b	S0^S1	
0111b	~S0+~S1 or ~ (S0 · S1)	
1000b	S0 · S1	
1001b	~ (S0^S1)	
1010b	S1	
1011b	~S0+S1	
1100b	SO	
1101b	S0+~S1	
1110b	S0+S1	
1111b	1 (Whiteness)	

Table 12-2: ROP Function

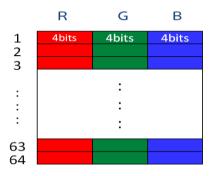
Note:

- 1. Source 0 (S0) Data: comes from MCU Writing or Memory
- 2. Source 1 (S1) Data: comes from Memory,
- 3. Destination (DT) Data: be written to Memory
- 4. Memory means internal Display RAM
- 5. Memory, S0, S1, and DT will always be quoted in this Chapter. For Example: If ROP function REG[91h] bit[7:4]=0xCh, then "DT = S0", it means "Transfer Source 0 data to Destination"; If ROP function REG[91h] bit[7:4]=0xEh, then "DT = S0 + S1", it means "Source 0 data + Source 1 data, and then transfer the result to the Destination".

ROP Function	Start Bit Position for Color Expansion BTE operation code = 1000/1001/1110/1111			
REG[91h] bit[7:4]	16bits MCU Interface	8bits MCU Interface		
0000b	Bit0	Bit0		
0001b	Bit1	Bit1		
0010b	Bit2	Bit2		
0011b	Bit3	Bit3		
0100b	Bit4	Bit4		
0101b	Bit5	Bit5		
0110b	Bit6	Bit6		
0111b	Bit7	Bit7		
1000b	Bit8	Invalid		
1001b	Bit9	Invalid		
1010b	Bit10	Invalid		
1011b	Bit11	Invalid		
1100b	Bit12	Invalid		
1101b	Bit13	Invalid		
1110b	Bit14	Invalid		
1111b	Bit15	Invalid		

Table 12-3: Color Expansion Function

12.1 BTE Basic Settings


The BTE basic settings, including Memory Start Address, Image Width, and Start Point Position (Coordinate) for each Source and Destination, can be defined by following registers:

- 1. S0 Address Registers: REG [93h], REG[94h], REG[95h], REG[96h], REG[97h], REG [98h], REG[99h], REG[9Ah], REG[9Bh], REG[9Ch]
- 2. S1 Address Registers: REG [9Dh], REG[9Eh], REG[9Fh], REG[A0h], REG [A1h], REG[A2h], REG[A3h], REG[A4h], REG[A5h], REG[A6h]
- 3. DT Address Registers: REG [A7h], REG[A8h], REG[A9h], REG[AAh], REG [ABh], REG[ACh], REG[ADh], REG[AEh], REG[AFh], REG[B0h]

12.2 Color Palette RAM

_T768x

LT768x has an embedded Color Palette RAM for 8-bits Alpha Blend function. Real colors can be retrieved by searching Color Palette RAM. As shown in Figure 12-1, Color Palette RAM is organized by 64*12bits. Since MCU writes 8 bits data at a time, when it writes every even byte, only the lower 4 bits will be stored to the RAM. When using Color Palette RAM, the Register REG[03h] bit [1:0] has to be set to 11b. Color Palette RAM must be written by 128 Bytes (8-bits per Byte) sequence at a time, and it is not readable. The diagram Figure 12-2 shows the initialization flow.

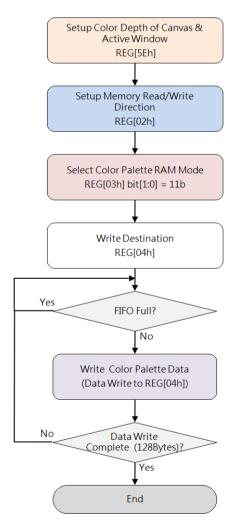


Figure 12-2: Flow Chart of Color Palette RAM Initialization

12.3 BTE Operation Overview

12.3.1 MCU Write with ROP

This operation supports 16 ROP functions. BTE engine will perform the ROP function automatically then write the result data to DT.

12.3.2 Memory Copy with ROP

This operation supports 16 ROP functions, but supports data transfer in positive direction only.

12.3.3 Solid Fill

This operation fills a specified rectangle area of DT with a solid color data defined in the Foreground Color Register.

12.3.4 Pattern Fill

This operation fills DT with an 8*8 or 16*16 pixel pattern.

12.3.5 Pattern Fill with Chroma Key

This operation fills DT with an 8*8 or 16*16 pixel pattern, combined with Chroma Key function but ROP function. If the pattern color is equal to the Chroma Key color which is defined in Background Color Register, then the destination BTE Window will not be changed.

12.3.6 MCU Write with Chroma Key

This operation supports data transfer from S0 (MCU Write) to DT. If S0 Color is equal to the Chroma Key Color which is defined in Background Color Register, then the destination BTE Window will not be changed. No ROP is applied for this operation.

12.3.7 Memory Copy with Chroma Key

This operation supports data transfer in positive direction only, and requires all source data and destination data located in Memory. If S0 Color is equal to Chroma Key color which is defined in Background Color Register, then the destination BTE Window will not be changed. No ROP is applied for this operation.

12.3.8 MCU Write with Color Expansion

This operation performs Color Expansion for the S0 (the data from MCU), from Monochrome 1 bpp format to Color 8/16/24 bpp format. The source data_1b will expand to the color data defined in the Foreground Color Register. The source data_0b will expand to the color data defined in the Background Color Register. If background transparency is enabled, then the color of destination BTE Window will remain no change.

Note: No matter background transparency is enabled or not, the color data set in Foreground Color Register (D2h~D4h) must be different from the color data set in Background Color Register (D5h~D7h).

12.3.9 Memory Copy with Color Expansion

This operation performs Color Expansion for Source 0 data from Memory, please refer to 12.3.8 for other description and note.

12.3.10 Memory Copy with Opacity

This operation performs Alpha Blending for S0 data and S1 data and transfers the result data to the destination BTE Window. It requires that S0, S1, and DT are located in Memory. The Alpha Blending has 2 modes, Picture Mode: for all pixels, blending by the same Alpha level. Pixel Mode: for each pixel, blending by individual Alpha Level of each pixel.

12.3.11 MCU Write with Opacity

This operation performs Alpha Blending for S0 data and S1 data and transfers the result data to destination BTE Window. It requires S0 coming from MCU and S1/DT from Memory. Please refer to 12.3.10 for the descriptions of 2 modes.

12.4 BTE Memory Access Method

BTE accesses data of Sources and Destination by Block Method, and the size of the Data Block is defined by BTE Window. Below diagram shows how users can define S0 / S1 / DT / BTE_Window, and shows the directions of Memory Access:

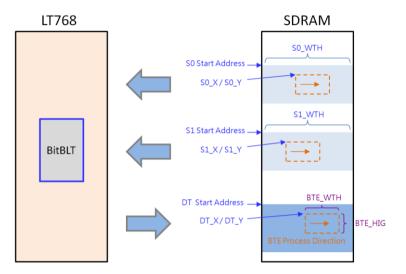


Figure 12-3: BTE Memory Access Method

12.5 BTE Chroma Key (Transparency Color) Function

If Chroma Key function is enabled, BTE will take Background Color (defined in Background Color Register) as the Chroma Key (Transparent Color), and compare the Chroma Key Data against the S0 Data one by one, if the compared result is equal, then BTE will not overwrite DT, otherwise write S0 Data to DT.

The description below shows the available bits of the Background Color Registers against different Color Depth:

Source Color Depth = 256

Compare S0 Red color vs. REG[D5h] bit [7:5],

Compare S0 Green color vs. REG [D6h] bit [7:5],

Compare S0 Blue color vs. REG [D7h] bit [7:6]

Source Color Depth = 65,536

Compare S0 Red color vs. REG[D5h] bit [7:3], Compare S0 Green color vs. REG [D6h] bit [7:2], Compare S0 Blue color vs. REG [D7h] bit [7:3]

Source Color Depth = 16,777,216

Compare S0 Red color vs. REG[D5h] bit [7:0], Compare S0 Green color vs. REG [D6h] bit [7:0], Compare S0 Blue color vs. REG [D7h] bit [7:0]

12.6 BTE Operation Detail

🗸 LT768x

12.6.1 MCU Write with ROP

This operation is to transfer S0 (form MCU Write) to DT, and supports all 16 ROP functions. Below diagram is an example of the operation result while BTE Control Register REG[91h] is set as 0xC0h.

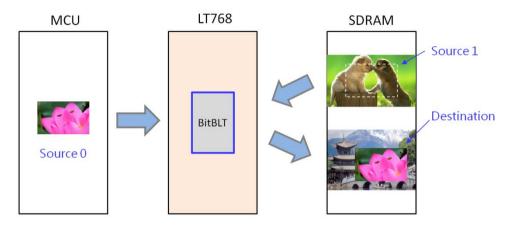


Figure 12-4: Example of MCU Write with ROP

The suggested programming steps and register settings are listed below for reference.

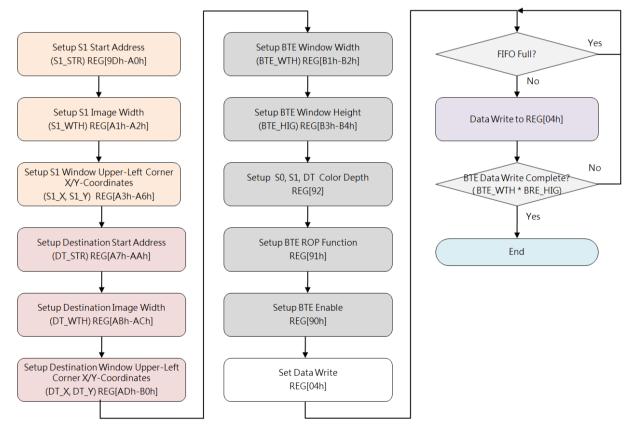


Figure 12-5: Flow Chart of MCU Write with ROP

12.6.2 Memory Copy (move) with ROP

This operation performs Memory Copy from S0 (from Memory) to DT. Below diagram is an example of the operation result while BTE Control Register REG[91h] is set as 0xC2h.

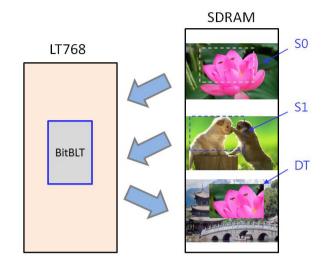


Figure 12-6: Example of Memory Copy with ROP

There are two ways to get BTE status. Figure 12-7 shows one way to get it by checking the Status Register STSR bit3, and Figure 12-8 shows another by checking hardware interruption.

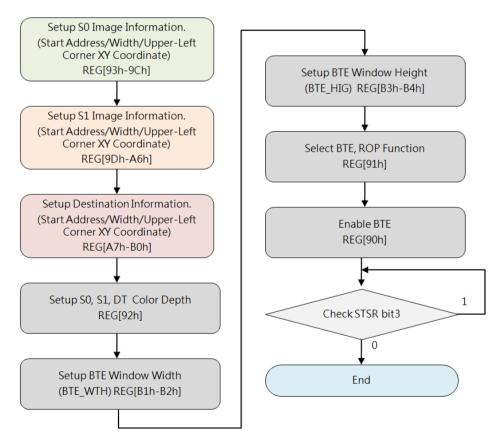


Figure 12-7: Flow Chart 1 of Memory Copy with ROP

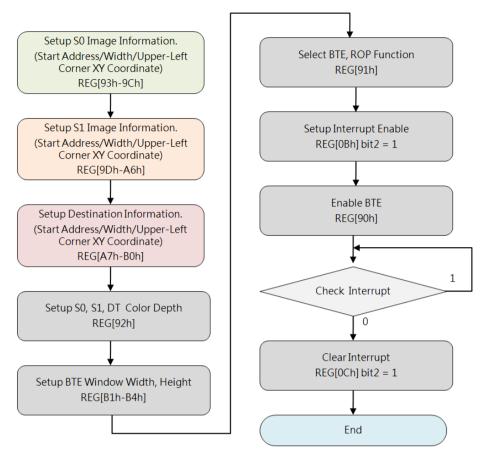


Figure 12-8: Flow Chart 2 of Memory Copy with ROP

12.6.3 MCU Write with Chroma Key (w/o ROP)

LT768x

This operation is to transfer S0 (from MCU Write) to DT, and supports Chroma Key function (referring to 12.5).

If S0 Color Data is equal to the Chroma Key (the color Data defined in the Background Color Registers REG[D5h-D7h]), BTE will take that color as Transparent, which means BTE will not write that color data to DT. Below example shows GREEN is the background color of RED "TOP", and GREEN is set as Chroma Key, therefore BTE will write RED "TOP" only to DT:

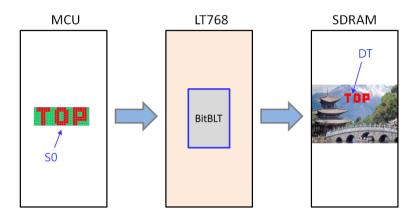


Figure 12-9: Example of MCU Write with Chroma Key

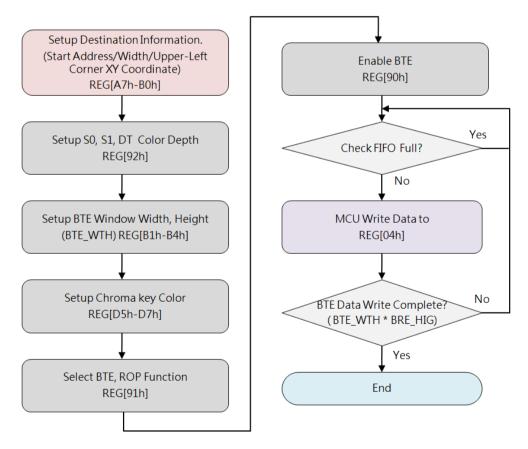


Figure 12-10: Flow Chart of MCU Write with Chroma Key

12.6.4 Memory Copy with Chroma Key (w/o ROP)

LT768x

This operation performs Memory Copy from S0 (from Memory) to DT, and supports Chroma Key function (referring to Section 12.5).

The difference comparing with "MCU Write with Chroma Key" is that S0 comes from Memory not from MCU, please refer to Section 12.6.3 for more descriptions and Figure 12-11 for an example:

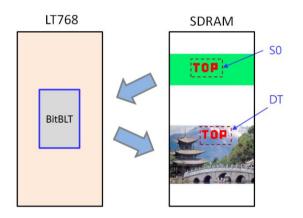


Figure 12-11: Example of Memory Copy with Chroma Key

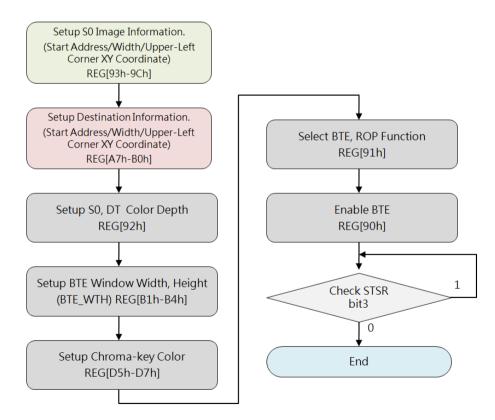


Figure 12-12: Flow Chart of Memory Copy with Chroma Key

12.6.5 Pattern Fill with ROP

This operation is to fill a pattern (as S0) repeatedly to a specified Rectangular Area of Destination (also known as BTE Window). The pattern should be an array of 8x8 or 16x16 pixels stored in Memory. The pattern can be logically processed with S1 by using one of the 16 ROP functions. This operation can be used to speed up duplicating a matrix of pattern into an area, such as background paste function.

Below example shows a six fills with 8x8 Pattern, ROP REG[91h] bit[7:4] is set as 0xCh:

Figure 12-13: Pattern Format

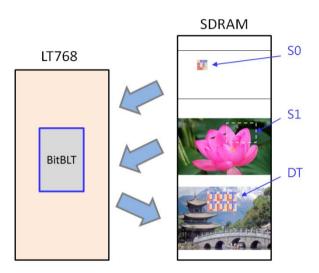
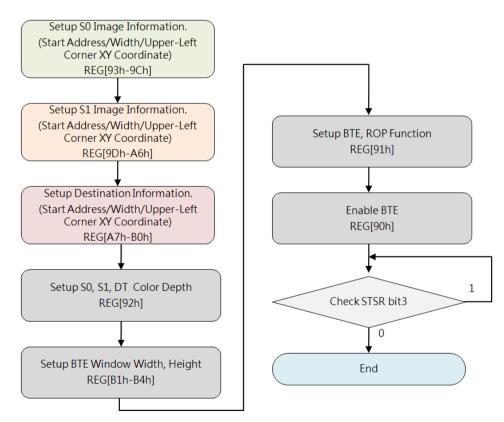
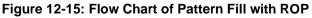




Figure 12-14: Example of Pattern Fill with ROP

12.6.6 Pattern Fill with Chroma Key

LT768x

This operation is to fill a pattern (as S0) repeatedly to a specified Rectangular Area of DT (also known as BTE Window), and supports Chroma Key function (referring to Section 12.5). If any color data of the pattern is equal to the Chroma Key data, BTE will not write that part of data to DT.

Below example shows ORANGE is the background color of RED "T", and ORANGE is set as the Chroma Key. Therefore, BTE will fill RED "T" only to DT one by one:

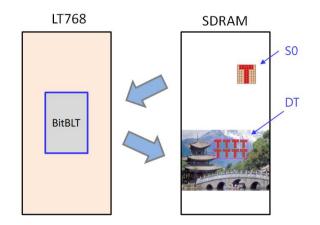


Figure 12-16: Example of Pattern Fill Chroma Key

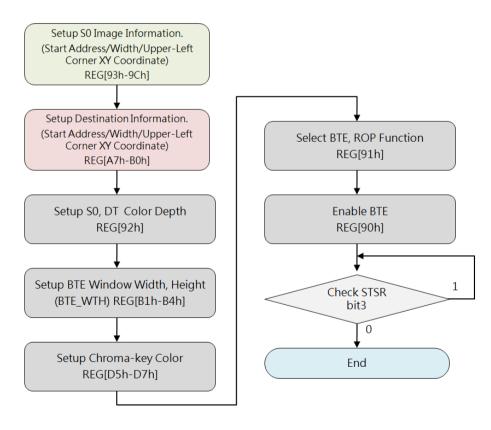


Figure 12-17: Flow Chart of Pattern Fill with Chroma Key

12.6.7 MCU Write with Color Expansion

This operation performs Color Expansion for S0 (from MCU Write). It is useful to translate bit-wise monochrome data to byte-wise color data. In this operation, S0 color depth REG[92h] bit[6:5] is ignored, BTE takes MCU Interface Width as S0 color depth (Word Width), that is, if MCU Interface is 8 bits, then the color depth is 8-bits, and if MCU Interface is 16 bits, then the color depth is 16-bits. Users should set needed start bit to REG[91h] bit[7:4] against the corresponding color depth, so bit[7] ~ bit[0] are available for 8-bits depth and bit[15] ~ bit[0] are available for 16-bits depth. BTE disassembles Word by Word to Bit sequences (from LSB to MSB) against the ROW Line of source image (from left to right), and sequently expands bit by bit until the BTE Width reaches ending. The result to DT is that data_1b expanded to Foreground Color and data_0b expanded to Background Color. Any bit before the Start Bit and other Bits uncovered by the BTE Window will be discarded.

Below example shows expanding data_1b to RED (Foreground Color) and data_0b to BLUE (Background Color), so the result to DT is RED "TOP" together with BLUE background:

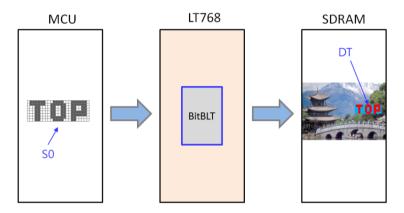


Figure 12-18: Example of MCU Write with Color Expansion

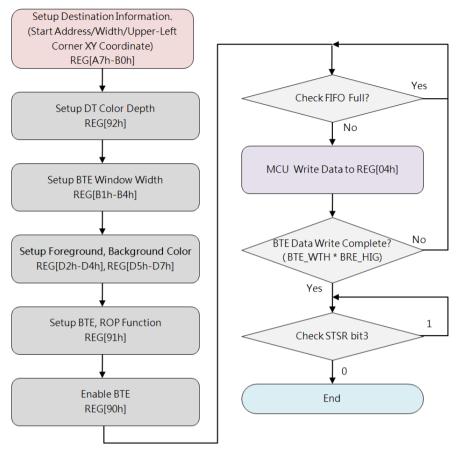
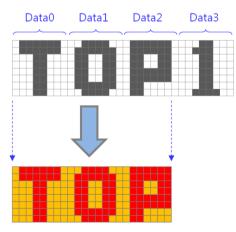
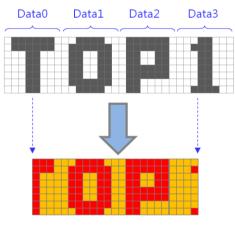




Figure 12-19: Flow Chart of MCU Write with Color Expansion

For 8-bits MCU Inerface, if ROP = 7, Foreground Color is set to RED, Background Color is set to KHAKI, and BTE Width is set to 23, then the color expansion result is as shown in Figure 12-20. If ROP = 3, then the result is shown as Figure 12-21.

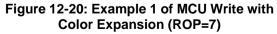


Figure 12-21: Example 2 of MCU Write with Color Expansion (ROP=3)

Note:

1. Sent Word_ Numbers_per_Row = [BTE_Width + (MCU_Interface_bits - Start_bit - 1)] / (MCU_ Interface _bits)

(Take integer with unconditional carry)

2. Word_Number_Total = (Word_ Numbers_per_Row) * BTE Height

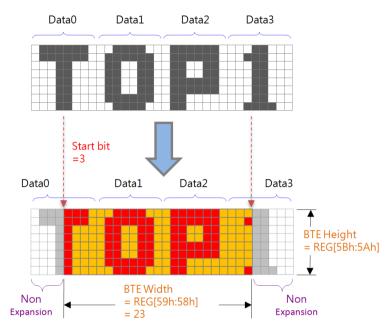


Figure 12-22: Data Format for Color Expansion

Example 1: "BTE Width"= 50, "MCU I/F bits" = 8 bits,

If Start bit=7, then: Sent Data Numbers per Row = [{ 50 + (8 - 7 - 1) } / 8] = 7 Bytes

If Start bit=4, then: Sent Data Numbers per Row = $[\{ 50 + (8 - 4 - 1) \} / 8] = 7$ Bytes

Example 2: "BTE Width"= 50, "MCU I/F bits" = 16 bits,

If Start bit =15, then: Sent Data Numbers per Row = [{ 50 + (16 - 15 - 1) } / 16] = 4 Bytes If Start bit=0, then:

Sent Data Numbers per Row = [{ 50 + (16 - 0 - 1) } / 16] = 5 Bytes

12.6.8 MCU Write with Color Expansion and Chroma key

LT768x

This operation is similar to MCU Write with Color Expansion, but the difference is that data_0b will be discarded, BTE expands only data_1b to Foreground Color.

Below example shows that data_1b is expanded to RED (Foreground Color) and data_0b is discarded, so the result to DT is RED "TOP" with TRANSPARENT background:

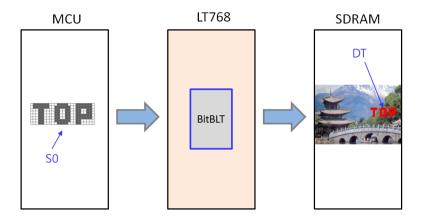


Figure 12-23: Example of MCU Write with Color Expansion and Chroma key

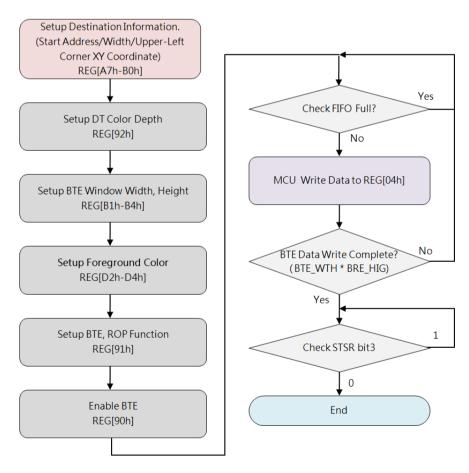


Figure 12-24: Flow Chart of MCU Write with Color Expansion and Chroma key

12.6.9 Memory Copy with Opacity

.T768x

This operation performs blending S0 and S1 data and transferring the result to DT. Two modes are available: Picture Mode and Pixel Mode.

Picture Mode is for 8bpp/16bpp/24bpp format and it uses the same Opacity Value (Alpha Level) for the whole bitmap picture. Opacity Value of Picture Mode is defined in REG[B5h].

Pixel Mode is for 8bpp/16bpp format and it uses individual Opacity Value of S1, each pixel of S1 has its own Opacity Value, such as: for each 16bpp data, the bit[15:12] is Opacity Value, and the bit[11:0] is color data; for each 8bpp data of S1, the bit[7:6] is Opacity Value, and the bit[5:0] is the Index (Address) of Palette Color RAM pointing to initialized 12-bits Color Depth data.

- Picture Mode: Alpha_Level = REG[B5h] DT Data = (S0 * Alpha Level) + (S1 * (1- Alpha Level))
- Pixel Mode 8bpp: Alpha_Level = S1_Bit[7:6] DT Data = (S0 * Alpha_Level) + (Palette_Color_RAM[S1_Bit[5:0]] * (1 - Alpha_ Level))
- Pixel Mode 16bpp: Alpha_Level = S1_Bit[15:12] DT Data = (S0 * Alpha Level) + (S1 Bit[11:0] * (1 – Alpha Level))

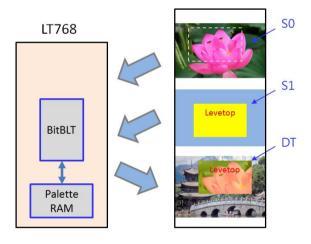


Figure 12-25: Example of Pixel Mode - 8bpp

Table 12-4: Alpha Blending of Pixel Mode - 8bpp

Bit[7:6]	Alpha Level					
0h	0					
1h	10/32					
2h	21/32					
3h	1					

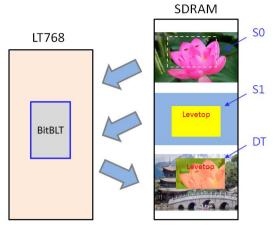


Figure 12-26: Example of Pixel Mode - 16bpp

Bit[15:12]	Alpha Level
Oh	0
1h	2/32
2h	4/32
3h	6/32
4h	8/32
5h	10/32
6h	12/32
7h	14/32
8h	16/32
9h	18/32
Ah	20/32
Bh	22/32
Ch	24/32
Dh	26/32
Eh	28/32
Fh	1

Table 12-5: A	Alpha Level	of Pixel	Mode - 16bpp	
		•••••••		

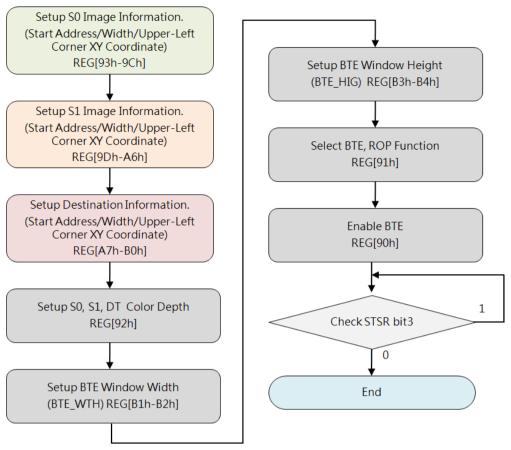


Figure 12-27: Flow Chart of Memory Copy with Opacity - Pixel Mode

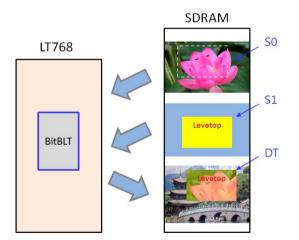


Figure 12-28: Example of Memory Copy with Opacity - Picture Mode

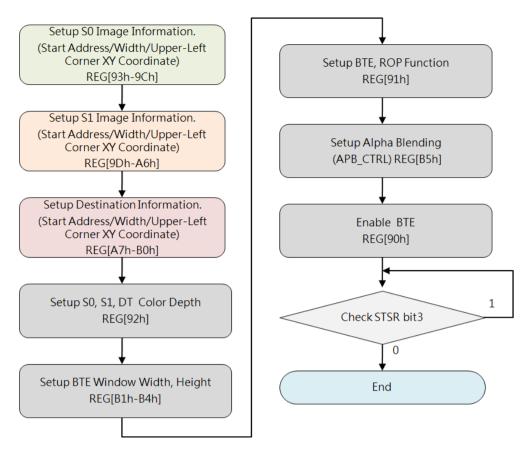


Figure 12-29: Flow Chart of Memory Copy with Opacity - Picture Mode

12.6.10 MCU Write with Opacity

LT768x

This operation is similar to Memory Copy with Opacity, but the difference is that S0 is from MCU Write, and it also has Picture Mode and Pixel Mode, for more descriptions please refer to Section 12.6.9.

Figure 12-30: Example of MCU Write with Opacity

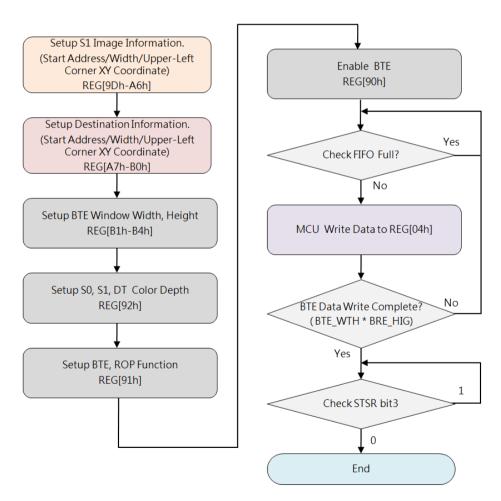


Figure 12-31: Flow Chart of MCU Write with Opacity

12.6.11 Memory Copy with Color Expansion

This operation performs Color Expansion for the S0 data (from Memory), it is useful to translate bit-wise monochrome data to byte-wise color data. In this operation, S0 data Color Depth (Word Width) is defined in REG[92h] bit[6:5]. Users should set needed Start Bit to REG[91h] bit[7:4] based on the corresponding color depth, bit[7] ~ bit[0] are available for 8-bits depth and bit[15] ~ bit[0] are available for 16-bits depth. BTE disassembles Word by Word to bit sequences (from MSB to LSB) based on the ROW Line of source image (from left to right), and sequently expands bit by bit until the BTE Width reaches ending as well. The result to DT is that data_1b is expanded to Foreground Color and data_0b is expanded to Background Color. Any bit before the Start Bit and other Bits uncovered by the BTE Window will be discarded.

Below example shows expanding data_1b to RED (Foreground Color) and data_0b to BLUE (Background Color), so the result to DT is RED "TOP" together with BLUE background:

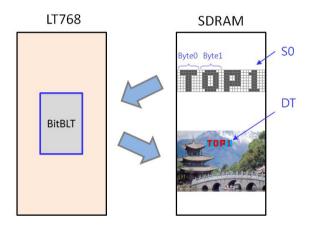


Figure 12-32: Example of Memory Copy with Color Expansion

While: S0 Color Depth = 8, Foreground Color = RED, Background Color = KHAKI, BTE window Width = 23, please refer to Figure 12-33 (ROP = 7) and Figure 12-34 (ROP = 3) as examples.

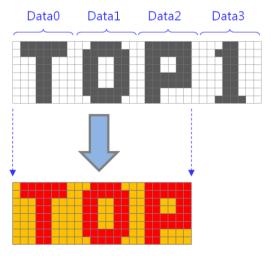


Figure 12-33: Example 1 of Memory Copy with Color Expansion (ROP=7)

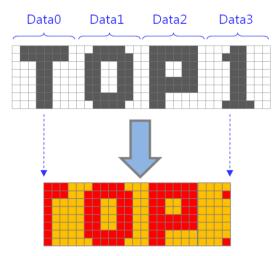


Figure 12-34: Example 2 of Memory Copy with Color Expansion (ROP=3)

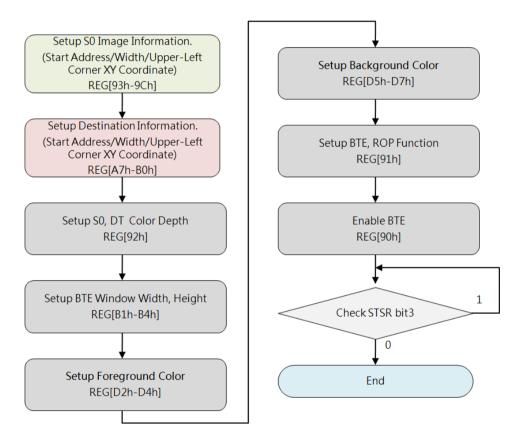


Figure 12-35: Flow Chart of Memory Copy with Color Expansion

12.6.12 Memory Copy with Color Expansion and Chroma Key

LT768x

This operation is similar to Memory Copy with Color Expansion, but the difference is that data_0b will be discarded, BTE expands only data_1b to Foreground Color.

Below example shows that data_1b is expanded to RED (Foreground Color), and data_0b is discarded, so the result to DT is RED "TOP" with TRANSPARENT background:

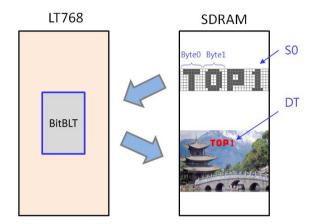


Figure 12-36: Example of Memory Copy with Color Expansion and Chroma Key

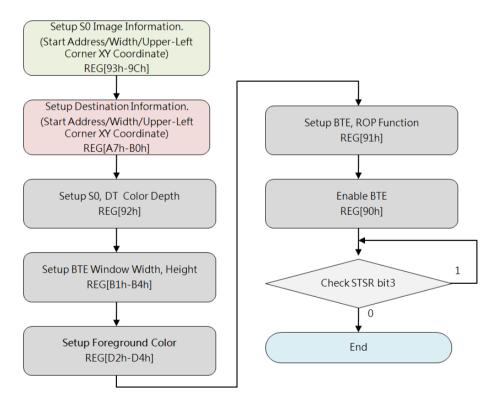


Figure 12-37: Flow Chart of Memory Copy with Color Expansion and Chroma Key

12.6.13 Solid Fill

🗸 LT768x

This operation is to fill a specified Rectangle Area (BTE Window) of DT with a Solid Color whose data is defined in the Foreground Color Register.

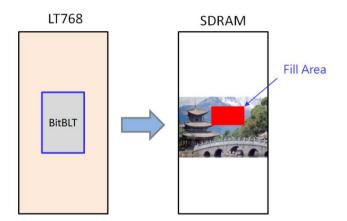


Figure 12-38: Example of Solid Fill

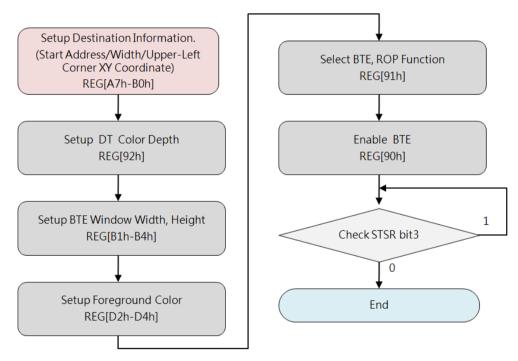


Figure 12-39: Flow Chart of Solid Fill

13. Display Text

T768x

LT768x supports 2 sources of Text (Character and Symbols):

- CGROM(Character Graphic ROM): Embedded ISO/IEC 8859 Character Sets
- CGRAM(Character Graphic RAM): User-defined Character Sets (UCG sets)

LT768x internal CGROM supports four sets of embedded Characters and Symbols of ASCII code, and internal CGRAM supports users to create their own Characters and Symbols sets when needed. The registers REG[CCh] ~REG[DEh] are for the purpose of User-defined Characters. The Foreground Color registers REG[D2h] ~REG[D4h] and the Background Color registers REG[D5h] ~ REG[D7h] are also employable to define Color for characters from any source.

13.1 Internal CGROM

LT768x has three built-in ASCII font types with different resolutions (character sizes): 8 x 16, 12 x 24, 16 x 32. The MCU can simply writes the font code to display the ASCII code on the LCD panel. The size of the displayed ASCII characters is set by REG[CCh] [5:4]. The ASCII code is corresponding to the standard ISO/IEC 8859-1/2/4/5 coding (Table 13-1 to Table 13-4 below). The type of ISO/IEC 8859 font displayed on the TFT panel is set by REG [CCh] [1:0]. In addition, users can select the color of the text by setting the front-view register REG (D2h to D4h) and the background color register (REG (D5h~D7h). Please refer to the following program flowchart:

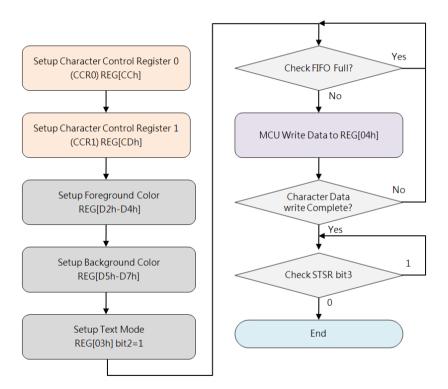


Figure 13-1: Flow Chart of CGROM Basic Programming

Table 13-1 shows the standard character encoding of ISO/IEC 8859-1. ISO stands for International Standardization Organization. The ISO/IEC 8859-1, generally known as "Latin-1". It is the first sets of 8-bit coded character encoding developed by the ISO, and referred to ASCII that consists of 192 characters from the Latin script in the range of 0xA0-0xFF. This character coding is used throughout Western Europe, including Albanian, Afrikaans, Breton, Danish, Faroese, Frisian, Galician, German, Greenlandic, Icelandic, Irish, Italian, Latin, Luxembourgish, Norwegian, Portuguese, Rhaeto-Romanic, Scottish Gaelic, Spanish, Swedish. English letters

without accent marks are also available in ISO/IEC 8859-1. In addition, it is also commonly used in many languages outside Europe, such as Swahili, Indonesian, Malaysian and Tagalong.

In Table 13-1, character codes 0x80~0x9F are defined by Microsoft Windows, also called CP1252 (WinLatin1).

ł	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Ε	F
0		0	۲	۷	٠	+	٠	•	t	0	0	ð	ę			۵
1	•	•	\$!!	1	8		Î	Î	↓	+	+	F	↔		V
2		ļ	11	#	\$	%	&	1	()	¥	+	, '	-		/
3	0	1	2	3	4	5	6	7	8	9	1	;	<	=	>	?
4	٥	A	В	С	D	E	F	G	Н	Ι	J	K	L	M	N	0
5	Ρ	Q	R	S	T	U	V	W	X	Y	Ζ	[\]	^	-
6	`	a	Ь	С	d	е	f	g	h	i	j	k	l	m	n	0
7	р	q	r	S	t	U	٧	W	X	у	Z	{		}	2	8
8	€		,	f	"		†	‡	^	%	Š	<	Œ		Ž	
9		•	,	"	"	•	-	-	~	TM	š	>	œ		ž	Ÿ
A		i	¢	£	¤	¥	1	§		C	ā	«	٦	-	R	1
В	0	±	2	3	1	μ	P	1	,	1	0	>>	1/4	1/2	3/4	Ś
С	À	Á	Â	Ã	Ä	Å	Æ	Ç	È	É	Ê	Ë	Ì	Í	Î	Ï
D	Ð	Ñ	Ò	Ó	Ô	Õ	Ö	x	0	Ù	Ú	Û	Ü	Ý	Þ	В
E	à	á	â	ã	ä	å	æ	Ç	è	é	ê	ë	ì	í	î	ï
F	ð	ñ	ò	ó	ô	õ	ö	1	Ø	ù	ú	Û	ü	ý	þ	ÿ

Table 13-1: ISO/IEC 8859-1

LT768x

Table 13-2: ISO/IEC 8859-2

H/	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
0		0	۲	۷	٠	ŧ	٠	•	t	0	0	6	ę	1	1	۵
1	•	•	\$!!	1	8	-	ţ	1	↓	+	+	F	0	4	V
2		!	н	#	\$	%	&	1	()	¥	+	,	-		1
3	0	1	2	3	4	5	6	7	8	9	1	- ,	<	=	>	?
4	٥	A	В	С	D	Ε	F	G	Η	Ι	J	Κ	L	M	N	0
5	Ρ	Q	R	S	T	U	V	W	Х	Y	Ζ	[1]	^	_
6		a	Ь	С	d	е	f	g	h	i	j	k	1	M	n	0
7	р	q	r	S	t	u	٧	W	X	у	Z	{		}	2	
8							2									
9																
A		Ą	~	Ł	П	Ľ	Ś	§		Š	Ş	Ť	Ź	-	Ž	Ż
В	0	ą		ł	,	ľ	ś	×	2	š	Ş	ť	ź	"	ž	ż
С	Ŕ	Á	Â	Ă	Ä	Ĺ	Ć	Ç	Č	É	Ę	Ë	Ě	Í	Î	Ď
D	Ð	Ń	Ň	Ó	Ô	Ő	Ö	X	Ř	Ů	Ú	Ű	Ü	Ý	Ţ	В
E	ŕ	á	â	ă	ä	1	ć	Ç	č	é	ę	ë	ě	í	î	ď
F	đ	ń	ň	ó	ô	ő	ö	÷	ř	ů	ú	ű	ü	ý	ţ	ľ

Table 13-2 shows the standard characters of ISO/IEC 8859-2, also known as Latin-2, it is the second sets of the 8-bit character encoding developed by ISO. This code sets can be used in almost any data interchange system to communicate in the following European languages: Croatian, Czech, Hungarian, Polish, Slovak, Slovenian, and Upper Sorbian. The Serbian, English, German, Latin can use ISO/IEC 8859-2 as well. Furthermore it is suitable to represent some western European languages like Finnish (with the exception of å used in Swedish and Finnish)

Table 13-3 shows the standard characters of ISO/IEC 8859-4, also known as Latin-4 or "North European", it is the fourth sets of the ISO/IEC 8859 8-bit character encoding. It was designed originally to cover Estonian, Greenlandic, Latvian, Lithuanian, and Sami. This character set also supports Danish, English, Finnish, German, Latin, Norwegian, Slovenian, and Swedish.

ł	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
0		0	۲	۷	٠	ŧ	٠	•	t	0	0	ð	Ŷ		1	۵
1	•	•	\$		1	§	-	1	1	↓	÷	+	F	⇔		V
2		!	н	#	\$	%	&	1	()	¥	+	,	-		1
3	0	1	2	3	4	5	6	7	8	9	1	1,	<	=	>	?
4	٥	A	В	С	D	Ε	F	G	Η	Ι	J	K	L	M	N	0
5	Ρ	Q	R	S	T	U	V	W	Х	Y	Ζ	[/]	^	_
6		а	Ь	С	d	е	f	g	h	i	j	k	1	m	n	0
7	р	q	r	S	t	u	٧	W	X	у	Z	{		}	2	11
8		1														
9							1									
A		Ą	К	Ŗ	П	Ĩ	Ļ	§		Š	Ē	Ģ	Ŧ	-	Ž	-
В	0	ą		ŗ	Í	ĩ	1	×	,	š	ē	ģË	ŧ	D	ž	ŋ
С	Ā	Á	Â	Ã	Ä	Å	Æ	Į	Č	É	Ę	T Partie	Ė	Í	Î	Ī
D	Ð	Ņ	Ō	Ķ	Ô	Õ	Ö	X	0	Ų	Ú	Û	Ü	Ũ	Ū	В
E	ā	á	â	ã	ä	å	æ	į	č	é	ę	ë	ė	í	î	ī
F	đ	ņ	Ō	ķ	Ô	Õ	ö	÷	Ø	ų	ú	û	ü	Ũ	ū	•

Table 13-3: ISO/IEC 8859-4

Table 13-4: ISO/IEC 8859-5

Y	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Ε	F
0		0	•	۲	٠	÷	¢	•	t	0	0	ð	ę	1	1	۵
1		•	\$!	1	§	-	ţ	Î	↓	→	+	F	⇔	4	V
2		!	н	#	\$	%	&	1	()	¥	+	,	-		/
3	0	1	2	3	4	5	6	7	8	9	1	- ,	<	=	>	?
4	0	A	В	С	D	E	F	G	Η	Ι	J	K	L	Μ	Ν	0
5	Ρ	Q	R	S	T	U	V	W	X	Y	Ζ	[1]	^	
6		а	Ь	С	d	е	f	g	h	i	j	k	1	M	n	0
7	р	q	r	S	t	u	V	W	Х	y	Z	{		}	2	11
8							1									
9																
A		Ë	Б	ŕ	3	S	Ι	Ï	J	Jb	Hb	ħ	Ŕ	-	ÿ	Ų
В	A	Б	В	Г	Д	Ε	Ж	3	И	Й	К	Л	М	H	0	Π
С	Ρ	С	Τ	у	Ф	X	Ц	y		Щ	Ь	bl	b	Э	Ю	Я
D	а	б	В	Г	Д	е	Ж	3	И	й	K	Л	М	H	0	П
E	р	С	Т	у	φ	χ	Ц	Ч	Ш	Щ	Ъ	bl	b	Э	Ю	Я
F	N₽	ë	ħ	ŕ	6	S	i	ï	j	Jb	Hb	ħ	Ŕ	§	ў	Ų

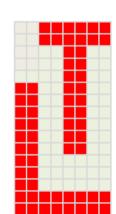
Table 13-4 shows the standard characters of ISO/IEC 8859-5, also known as the fifth sets of the ISO/IEC 8859 8-bit character encoding. It was designed originally to cover Bulgarian ,Belarusian, Russian, Serbian and Macedonian.

Figure 13-2: Internal ASCII Font for 8*16, 12*24 and 16*32

13.2 User-defined Character Graphic (UCG)

Users can create and utilize UCG when needed. LT768x supports Half Width size (8x16, 12x24, 16x32 dot-matrix graphic) and Full Width size (16x16, 24x24, 32x32 dot-matrix graphic), and supports up to 32,768 UCGs with half width by encoding from 0000h up to 7FFFh, and up to 32,768 UCGs with full width by encoding from 8000h up to FFFFh.

To display a specific UCG, MCU just needs to write corresponding CODE of the UCG to LT768x, LT768x can resolve the CODE (relative ADDRESS of CGRAM) to correspond the absolute ADDRESS of Memory where the UCG data is really saved, then transfer the graphic data to display Memory Buffer. Users can define Foreground Color by setting the REG[D2h] ~REG[D4h] and Background Color by setting the REG[D5h]~REG[D7h] in advance.

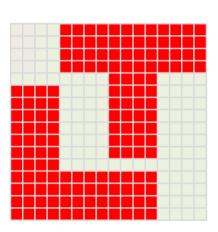

13.2.1 8*16 UCG Data Format

UCG with 8*16 size needs 16 bytes data. For example, CGRAM start address is 1000h and the first UCG encoding is 0000h, the data will be saved in 1000h~100Fh, then the second UCG encoding will be 0001h and its data will be saved in 1010h~101Fh. Below formula shows how the 8*16 UCG address in Memory is calculated, and Table 13-5 explains the data format and data byte sequence:

UCG_ADD = CGRAM_Start_ADD + (UCG_Code * 16)

UCG Cod	le: 0000h	UCG Cod	le: 0001h
Address	Data	Address	Data
1000h	Byte0: 3Fh	1010h	Byte0
1001h	Byte1: 3Fh	1011h	Byte1
1002h	Byte2: 0Ch	1012h	Byte2
1003h	Byte3: 0Ch	1013h	Byte3
:	:	:	:
:	:	:	:
:	:	:	:
100Dh	Byte14: C0h	101Dh	Byte14
100Eh	Byte14: FFh	101Eh	Byte14
100Fh	Byte15: FFh	101Fh	Byte15

Table 13-5: Data Format and Byte Sequenc of 8*16 UCG

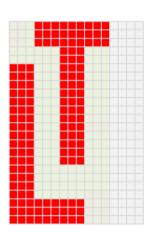

13.2.2 16*16 UCG Data Format

UCG with 16*16 size needs 32 bytes data. For example, CGRAM start address is 1000h and the first UCG encoding is 0000h, the data will be saved in 1000h~101Fh, then the second UCG encoding will be 0001h and its data will be saved in 1020h~103Fh. Below formula shows how the 16*16 UCG address in Memory is calculated, and Table 13-6 explains the data format and data byte sequence:

UCG_ADD = CGRAM_Start_ADD + (UCG_Code * 32)

	UCG Code: 0000h									
Address	Data	Address	Data							
1000h	Byte0: 0Fh	1001h	Byte1: FFh							
1002h	Byte2: 0Fh	1003h	Byte3: FFh							
1004h	Byte4: 0Fh	1005h	Byte5: FFh							
1006h	Byte6: <mark>0Fh</mark>	1007h	Byte7: FFh							
:	:	:	:							
:	:	:	:							
:	:	:	:							
101Ah	Byte26: FFh	101Bh	Byte27: F0h							
101Ch	Byte28: FFh	101Dh	Byte29: F0h							
101Eh	Byte30: FFh	101Fh	Byte31: F0h							

Table 13-6: Data Format and Byte Sequenc of 16*16 UCG


13.2.3 12*24 UCG Data Format

UCG with 12*24 size needs 48 bytes data, note that bit[3:0] of the byte with Odd Sequence Number is ignored. For example, CGRAM start address is 1000h and the first UCG encoding is 0000h, the data will be saved in 1000h~102Fh, then the second UCG encoding will be 0001h and its data will be saved in 1030h~105Fh. Below formula shows how the 12*24 UCG address in Memory is calculated, and Table 13-7 explains the data format and data byte sequence:

UCG_ADD = CGRAM_Start_ADD + (UCG_Code * 48)

	UCG Code: 0000h								
Address	Data	Address	Data						
1000h	Byte0: 1Fh	1001h	Byte1: F0h						
1002h	Byte2: 1Fh	1003h	Byte3: F0h						
1004h	Byte4: 1Fh	1005h	Byte5: F0h						
1006h	Byte6: 03h	1007h	Byte7: <mark>80h</mark>						
:	:	:	:						
:	:	:	:						
:	:	:	:						
102Ah	Byte42: FFh	102Bh	Byte43: 80h						
102Ch	Byte44: FFh	102Dh	Byte45: 80h						
102Eh	Byte46: FFh	102Fh	Byte47: 80h						

Table 13-7: Data Format and Byte Sequenc of 12*24 UCG

13.2.4 24*24 UCG Data Format

UCG with 24*24 size needs 72 bytes data. For example, CGRAM start address is 1000h and the first UCG encoding is 0000h, the data will be saved in 1000h~1047h, then the second UCG encoding will be 0001h and its data will be saved in 1048h~108Fh. Below formula shows how the 24*24 UCG address in Memory is calculated, and Table 13-8 explains the data format and data byte sequence:

UCG_ADD = CGRAM_Start_ADD + (UCG_Code * 72)

	UCG Code: 0000h									
Address	Data	Address	Data	Address	Data					
1000h	Byte0	1001h	Byte1	1002h	Byte2					
1003h	Byte3	1004h	Byte4	1005h	Byte5					
1006h	Byte6	1007h	Byte7	1008h	Byte8					
1009h	Byte9	100Ah	Byte10	100Bh	Byte11					
:	:	:	:	:	:					
:	:	:	:	:	:					
:	:	:	:	:	:					
103Fh	Byte63	1040h	Byte64	1041h	Byte65					
1042h	Byte66	1043h	Byte67	1044h	Byte68					
1045h	Byte69	1046h	Byte70	1047h	Byte71					

Table 13-8: Data Format and Byte Sequenc of 24*24 UCG

13.2.5 16*32 UCG Data Format

UCG with 16*32 size needs 64 bytes data. For example, CGRAM start address is 1000h and the first UCG encoding is 0000h, the data will be saved in 1000h~103Fh, then the second UCG encoding will be 0001h and its data will be saved in 1040h~107Fh. Below formula shows how the 16*32 UCG address in Memory is calculated, and Table 13-9 explains the data format and data byte sequence:

UCG_ADD = CGRAM_Start_ADD + (UCG_Code * 64)

	UCG Code: 0000h								
Address	Data	Address	Data						
1000h	Byte0	1001h	Byte1						
1002h	Byte2	1003h	Byte3						
1004h	Byte4	1005h	Byte5						
1006h	Byte6	1007h	Byte7						
:			:						
·	•								
103Ah	Byte58	103Bh	Byte59						
103Ch	Byte60	103Dh	Byte61						
103Eh	Byte62	103Fh	Byte63						

Table 13-9: Data Format and Byte Sequenc of UGC

13.2.6 32*32 UCG Data Format

UCG with 32*32 size needs 128 bytes data. For example, CGRAM start address is 1000h and the first UCG encoding is 0000h, the data will be saved in 1000h~107Fh, then the second UCG encoding will be 0001h and its data will be saved in 1080h~10FFh. Below formula shows how the 32*32 UCG address in Memory is calculated, and Table 13-10 explains the data format and data byte sequence:

UCG_ADD = CGRAM_Start_ADD + (UCG_Code * 128)

UCG Code: 0000h								
Address	Data	Address	Data	Address	Data	Address	Data	
1000h	Byte0	1001h	Byte1	1002h	Byte2	1003h	Byte3	
1004h	Byte4	1005h	Byte5	1006h	Byte6	1007h	Byte7	
1008h	Byte8	1009h	Byte9	100Ah	Byte10	100Bh	Byte11	
100Ch	Byte12	100Dh	Byte13	100Eh	Byte14	100Fh	Byte15	
:	:	:	:	:	:	:	:	
:	:	:	:	:	:	:	:	
:	:	:	:	:	:	:	:	
1074h	Byte116	1075h	Byte117	1076h	Byte118	1077h	Byte119	
1078h	Byte120	1079h	Byte121	107Ah	Byte122	107Bh	Byte123	
107Ch	Byte124	107Dh	Byte125	107Eh	Byte126	107Fh	Byte127	

Table 13-10: Data Format and Byte Sequenc of 32*32 UCG

13.2.7 Initialize CGRAM from MCU

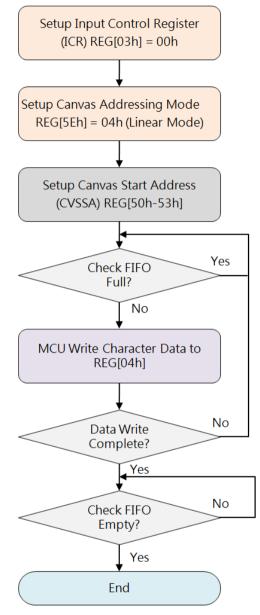


Figure 13-3: Flow Chart of CGRAM Initialization from MCU

13.2.8 Initialize CGRAM from Serial Flash

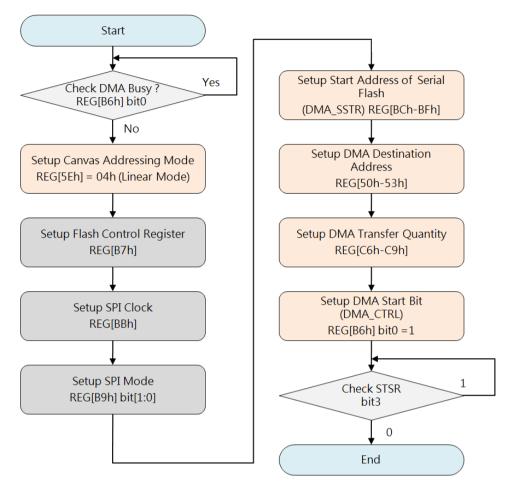


Figure 13-4: Flow Chart of CGRAM Initialization from Serial Flash

13.3 Character Rotation by 90 Degree

LT768x supports character rotation by counterclockwise 90 degree. Normal (REG[CDh] bit4=0) text direction is from left to right then from top to bottom. If set REG[CDh] bit4=1, the character will be counterclockwise rotated by 90 degree, and flipped in vertical. Also, the text direction will be changed to from top to bottom then from left to right. However, to get the correct display result, the Display Scan Direction must be changed by setting VDIR Reg[12h] bit3=1 (Please note that Text Cursor, Graphic Cursor, and PIP will be disabled automatically under this setting). Below example shows a set of characters rotated by 90 degree:

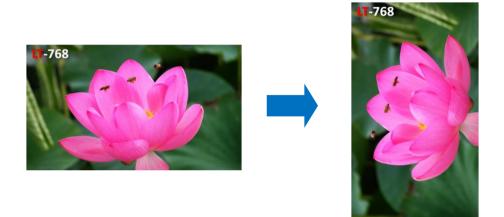


Figure 13-5: Example of Character Rotation

13.4 Size Enlargement

LT768x supports linear *1, *2, *3, *4 character size enlargement for Height and/or Width, controlled by REG[CDh] bit[3:0].

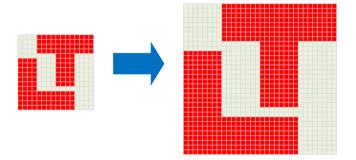


Figure 13-6: Example of Size Enlargement

13.5 Background Transparency

LT768x supports character background transparent, controlled by REG[CDh] bit6.

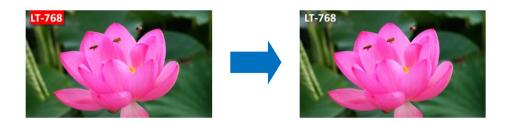
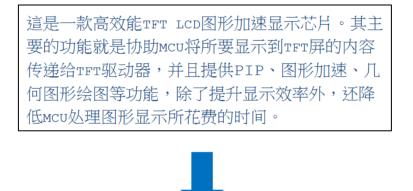



Figure 13-7: Example of Background Transparency

13.6 Character Full-Alignment

LT768x supports character full-alignment that makes the character to align each other. When inputting and displaying Half or Full size characters, set REG[CDh] bit7=1.

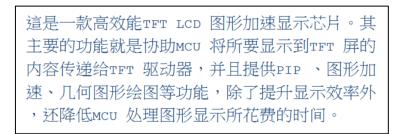


Figure 13-8: Example of Character Full-Alignment

13.7 Automatic Line Feed

LT768x supports sequent text input and display, and can perform automatically Line Feed at active window boundary.

Figure 13-9: Example of Automatic Line Feed

13.8 Cursor

LT768x supports 2 types of Cursor, Graphic Cursor and Text Cursor. The Graphic Cursor is 32*32 pixel graphic with 2-bits color index which can be displayed at an user-defined position. The Text Cursor is bit-wise graphic with 32*32 as the maximum size, and is used to point text input position. Note that when Vertical Scan Direction is set to "From bottom to Top" (VDIR REG[12h] bit=1), Text Cursor, Graphic Cursor, as well as PIP will be disabled automatically.

13.8.1 Text Cursor

Text Cursor has Auto-move, Blinking, and Enlargement functions. Once enabled, the Text Cursor appears at the input position, and can automatically move to the next input position after the current input is completed. Auto-move also supports Auto Line Feed, but is dominated by Active Window. Therefore, Text Cursor must be positioned in active window and be used in Text Mode. Settings for moving distance and direction are the same as Character input settings.

Register Address	Register Name	Description		
REG[03h]	ICR	bit2: Graphic/Text Mode Selection (Text Mode Enable)		
REG[3Ch]	GTCCR	bit1: Text Cursor Enable		
		bit0: Text Cursor Blinking Enable)		
REG[64h:63h]	F_CURX	X_Position: Text Input X coordinate		
REG[66h:65h]	F_CURY	Y_Position: Text Input Y coordinate		
REG[D0h]	FLDR	Text Line Gap Setting		

Table 13-11: Regiaters Related with Text Cursor

Text Cursor Blinking

Text Cursor Blinking can be enabled by setting GTCCR (REG[3Ch]) bit[0]=1, and disabled by setting bit[0]=0. Blinking interval can be obtained through below formula:

```
Blink_Time (sec) = BTCR[3Dh] * (1/Frame_Rate)
```


Figure 13-10: Example of Text Cursor Blinking

■ Text Cursor Height and Width

Text Cursor Height and Width are controlled by CURHS ($\mathsf{REG[3Eh]}$) and CURVS ($\mathsf{REG[3Fh]}$).

If Character enlargement is enabled, Text Cursor enlargement is also enabled automatically according to the same enlargement settings.

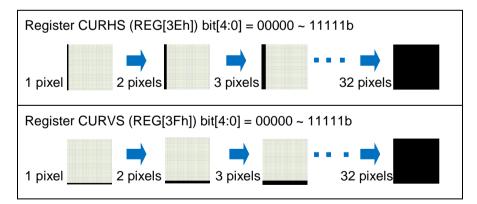


Figure 13-11: Example of Text Cursor Height and Width Settings

13.8.2 Graphic Cursor

LT768x Graphic Cursor is 32*32 pixel graphic, and the color of each pixel is represented by 2 bits data. The color data are defined as shown in Table 13-12:

2'b00	2'b00 Color-0, defined by GCC0 (REG[44h])	
2'b01	Color-1, defined by GCC1 (REG[45h])	
2'b10	Background Color	
2'b11	Inversed Background Color	

To create a Graphic Cursor, it takes 256 bytes (32x32x2/8), Figure 13-12 shows the data format and byte sequence. LT768x supports 4 sets of graphic cursor that users can choose from by setting GTCCR REG[3Ch] bit[3:2]. Display position of graphic cursor is controlled by register GCHP0 (REG[40h]), GCHP1(REG[41h]), GCVP0(REG[42h]) and GCVP1(REG[43h]).

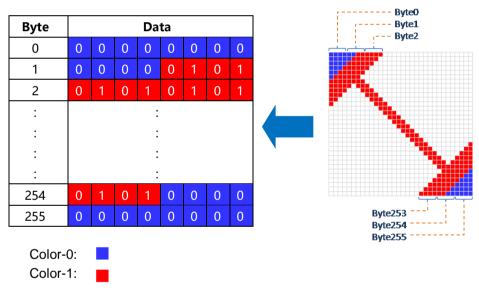


Figure 13-12: Graphic Cursor Data Format and Example

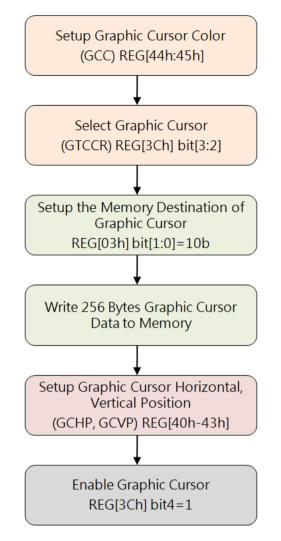


Figure 13-13: Flow Chart of Graphic Cursor Creation

14. Pulse Width Modulation (PWM)

LT768x has built-in PWM functions, and provides two PWM signal outputs: PWM0 and PWM1. LT768x also has embedded two 16bits counters, Timer-0 and Timer-1, and its action is related to the output state of the PWM signals. For example, before using the PWM0, the Host must set Timer-0 count registers (TCNTB0, REG[8Ah-8Bh],) and Timer-0 count comparison registers (TCMPB0, REG[88h-89h]). After the PWM function is enabled, the Timer-0 counter will first load the TCNTB0 value and start counting down according to the PWM clock frequency. When the value of the Timer-0 counter equals the value of the TCMPB0 register, PWM will be active. This means if the original state of PWM0 is 0, it will change to 1. The Timer-0 counter will continue to count down, and when Timer-0 equals 0, then an interrupt will be generated. The state of PWM0 will be back to the original 0, and also automatically reload TCNTB0 value. The above procedure represents a complete PWM cycle.

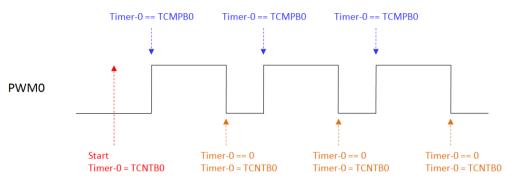


Figure 14-1: PWM0 Output Wave Form

Based on the above waveform and description, the duty cycle of PWM0 is determined by comparison registers (TCMPB0, REG[88h-89h]). For example, to generate a voltage of approximate DC potential by PWM0, when the PWM0 is initially set to 0, the larger value of the TCMPB0 is set, the higher equivalent voltage on PWM0 will be. On the other hand, when the PWM0 is initially set to 1, the smaller value of the TCMPB0 is set, the higher equivalent voltage on PWM0 will be.

Note: The automatic reload feature of PWM0 (REG[86h] bit1) must be activated, and when Timer-0 equals 0, it will reload the value of the TCNTB0 automatically. Therefore, if the MCU changes TCNTB0 or TCMPB0 value before Timer-0 equals 0, PWM can produce different duty-cycle waveform.

14.1 PWM Clock Source

The PWM's clock source comes from CCLK(System Clock), while the Timer-0 and Timer-1 base frequencies are determined by register PSCLR (REG[84h]):

PWM_CLK = CCLK / (Prescaler + 1)

The clock source of Timer is determined by the respective frequency registers (REG[85h]). The Timer Divisor provides four options: 1, 1/2, 1/4, 1/8 for the Timer's clock. For example the REG[85h] Bit[5:4] = 10b, then the Timer-0 count Clock = System_clock/4. Please refer to the Register Description of the Chapter 19 for REG[84H] and REG[85h].

14.2 PWM Output

The output of PWM can also be set to a fixed high or low level. For PWM0, first to turn off the automatic reload feature (REG[86h] bit1 = 0), and stop counting down Timer-0 (REG[86h] bit0 = 0), if Timer-0 < TCMP0, then PWM output high. If Timer-0 > TCMP0, then PWM output low (assuming the reverse phase is closed, REG[86h] bit2=0). The output state of the PWM0 can be set to the inverse phase by REG[86h] bit2.

In addition, PWM0 and PWM1 are multiplex output pins that can be used for other purposes, please refer to the following description of Register REG[85h] bit[3:0].

Bit	Description
	PWM[1] Function Control
	0xb: PWM[1] output system error flag (Scan FIFO POP error or Memory access out of range)
3-2	10b: PWM[1] output PWM timer 1 event or invert of PWM timer 0
	11b: PWM[1] output Oscillator Clock
	PWM[0] Function Control
	0xb: PWM[0] becomes GPIOC[7]
1-0	10b: PWM[0] output PWM Timer 0
	11b: PWM[0] output Core Clock (CCLK)
1	

Table 14-1: REG[85h] Description

PWM0 and PWM1 can also be set to complementary outputs. In this case, the output state of PWM1 follows the setting and control of PWM0, except that it is a PWM0 reverse output state:

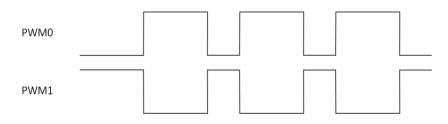


Figure 14-2: The Complementary Outputs of PWM0 and PWM1

In some applications, when using Complementary Outputs of PWM0 and PWM1, changing state of PWM0 and PWM1 at the same time may cause excessive current. LT768x provides a dead-zone timing control to stagger the output state of PWM0 and PWM1. The dead-zone length of PWM is set by register REG[87h] (DZ_LENGTH):

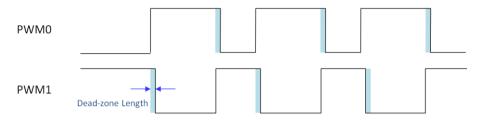


Figure 14-3: dead-zone of PWM0 and PWM1

15. Serial Bus Master

15.1 Power-on Display

LT768x's Power-on Display circuit has embedded a small microprocessor unit. The main function is to quickly display the screen at boot time by executing the program code stored in flash memory in the absence of Host, or when the Host is still in its start-up phase. To use this function, PWM[0] pin must connect a 10K pull-up resistor, then the "Power-On Display" function will be enabled (Refer to Figure15-1). In this case where the function is enabled, LT768x will automatically execute the program until the program code in the Flash memory is fully executed. After that, Host will retrieve the control of the system.

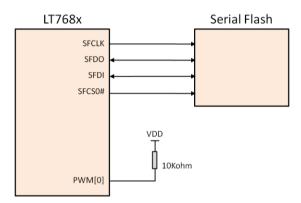


Figure 15-1: Enable the "Power-On Display" Function

The power-on display feature restricts that program code and display data must be stored in the same Flash memory. The Power-on Display unit supports 12 instructions as follows:

No.	Instruction	Description	instruction Length (Byte)
1	EXIT	Exit instruction (00h/FFh)	1
2	NOP	NOP instruction (AAh)	1
3	EN4B	Enter 4-Byte mode instruction (B7h)	1
4	EX4B	Exit 4-Byte mode instruction (E9h)	1
5	STSR	Status read instruction (10h)	2
6	CMDW	Command write instruction (11h)	2
7	DATR	Data read instruction (12h)	2
8	DATW	Data write instruction (13h)	2
9	REPT	Load repeat counter instruction (20h)	2
10	ATTR	Fetch Attribute instruction (30h)	2
11	JUMP	Jump instruction (80h)	5
12	DJNZ	Decrement & Jump instruction (81h)	5

Table 15-1	12 Power-or	n Display	Instructions
		ισιορία	mon uctions

One Byte Instruction:

Exit instruction (EXIT) – 00h | FFh | Undefined instructions

EXIT instruction is executed to exit the Power-on Display function, and return control right to Host.

NOP instruction (NOP) – AAh

It will do nothing and then fetch next instruction.

Enter 4-Byte mode instruction (EN4B) – B7h

This instruction enables accessing the address length of 32-bit for the memory area of higher density (larger than 128Mb). The control unit default is in 24-bit address mode; after sending out the EN4B instruction, the address length becomes 32-bits instead of the default 24-bits. There are three methods to exit the 4-bytes mode: writing Exit 4-bytes Mode (EX4B) instruction, Hardware Reset or Power-off.

Exit 4-Byte mode instruction (EX4B) – E9h

The EX4B instruction is executed to exit the 4-bytes address mode and return to the default 3-bytes address mode. Once exiting the 4-bytes address mode, the address length will return to 24-bits.

Two Bytes Instruction:

Load repeat counter instruction (REPT) – 20h + param[0]

This instruction contains one byte parameter. This parameter is mainly for repeating counter value and used with DJNZ instruction.

Fetch attribute instruction (ATTR) – 30h + param[0]

This instruction contains one byte parameter. This instruction is used to configure controller to access serial Flash data. In Param[0]:

_bit [3:0] is clock divisor for SPI clock. This is used to set proper SPI clock based on the system clock. Default is 0.

Fsck = Fcore / [(Divisor + 1) * 2]

_bit [4] is device mode selection for [CPOL, CPHA]. Value '0' is mode 0, value '1' is mode 3. Default is 1 for mode 3.

_bit [5] is to define SFCS[1:0] deselect time which is also called chip select high time (tCSH). Value '0' is 4 core clocks; value '1' is 8 clocks. Default is 8 core clocks.

_bit [7:6] is dummy cycle number. These two bits set 4 kinds of dummy cycle. The Value 0, 1, 2 or 3 stands for 0, 8, 16 or 24 dummy cycles. Default is 0. If dummy cycle number is 0 then serial flash read command code is 03h, otherwise serial flash read command code is 0Bh.

Status read instruction (STSR) – 10h + param[0]

The parameter represents the expected value in Status read **instruction**. If returned data dose not match with the expected value, this read instruction will be repeated.

Command write instruction (CMDW) – 11h + param[0]

The parameter represents the value that is to be written through CMDW instruction.

Data read instruction (DATR) – 12h + param[0]

The parameter represents an expected value. After issuing DATR, if the returned data does not match with the expected value, the instruction will be exceuted repeatedly.

Data write instruction (DATW) – 13h + param[0] The parameter represents the written value by Data write instruction.

Five Bytes Instruction:

■ Jump instruction (JUMP) – 80h + param[3] + param[2] + param[1] + param[0]

It contains 4-bytes parameters. Parameter 3~0 are serial flash's 28-bits address information. i.e. param[3] is address[27:24], param[2] is address[23:16], param[1] is address[15:8] and param[0] is address[7:0]. After execution, next instruction will be fetched from this specified address.

Decrement & Jump while not equal to zero (DJNZ) instruction – 81h + param[3] +

param[2] + param[1] + param[0]

Parameter 3~0 are serial flash's 28-bits address information. i.e. param[3] is address[27:24], param[2] is address[23:16], param[1] is address[15:8] and param[0] is address[7:0]. If the repeat counter equals zero, then the next instruction will be fetched from "current instruction address + 5", otherwise the repeat counter will decrement one and jump to specified address.

After the Power-on Reset, the Power-on Display function will search the two SPI interfaces provided by LT768x. The first 8 bytes must be "61h, 72h, 77h, 63h, 77h, 62h, 78h, 67h". If the flash memory is identified then the subsequent processing address will be (0008h), otherwise the master control will be transferred to the Host. LT768x internal microprocessor will start to execute instructions from the address 0008h of the flash memory. During the execution of Power-on Display, if an "Exit" or undefined instruction is executed, the processor will hand over the control to the host. Here is an example of using an external serial Flash and show a 1024*768 picture on an 1024*768 resolution TFT panel:

// /	Addr:	'h000	00										
61	72	77	63	77	62	78	67		// ID				
//lr 11 11 11 11 11 11 11 11 AA	06 07 08 09 0A 00 01 01 01	13 13 13 13 13 13 13 13 12 13	8A 41 8A 64 8A 64 80 82 82 40 40	Ą	// F // F // F // F // F // F	REG_ REG_ REG_ REG_ REG_ REG_ REG_ REG_	_WR(_WR(_WR(_WR(_WR(_WR(_WR(_WR('h06 'h07 'h08 'h09 'h04 'h00 'h01	, 'h8A), , 'h8A) , 'h64) , 'h8A) , 'h8A) , 'h80) , 'h82) , 'h82) , 'h82) , 'h40)	Write	0x8A	to RE	G[05]
//lr 11 11 11 11 11 AA	E1 E2 E3 E4	Displa 13 13 13 13 13 13 AA	29 03 0B 03 01		// F // F // F // F	REG_ REG_ REG_	_WR(_WR(_WR('hE1 'hE2 'hE3	, 'h29) , 'h03) , 'h0B) , 'h03) , 'h01)				
//S 11 11 11 11 11 11	12 13 14 15 1A	LCD 13 13 13 13 13 13 13	Pane 04 85 03 7F 00 FF 02	91	// F // F // F // F	REG_ REG_ REG_ REG_ REG_	_WR(_WR(_WR(_WR(_WR(_WR('h12 'h13 'h14 'h15 'h1A	, 'h04) , 'h85) , 'h03) , 'h7F) , 'h00) , 'hFF) , 'h02)				
// { 11 11 11 11	21	Mair 13 13 13 13	n Win 00 00 00 00	dow	// F // F	REG_ REG_	_WR(_WR('h21 'h22	, 'h00) , 'h00) , 'h00) , 'h00)				

11 24	13 00	// REG_WR('h24, 'h00)
11 25	13 04	// REG_WR('h25, 'h04)
11 26	13 00	// REG_WR('h26, 'h00)
11 27	13 00	// REG_WR('h27, 'h00)
11 28	13 00	// REG_WR('h28, 'h00)
11 29	13 00	// REG_WR('h29, 'h00)
AA AA	13 00	// NOP
//Setup	Canvas Windo	ow
11 50	13 00	// REG_WR('h50, 'h00)
11 51	13 00	// REG_WR('h51, 'h00)
11 52	13 00	// REG_WR('h52, 'h00)
11 53	13 00	// REG_WR('h53, 'h00)
11 54	13 00	// REG_WR('h54, 'h00)
11 55	13 04	// REG_WR('h55, 'h04)
//Setup 11 56 11 57 11 58 11 59 11 5A 11 5B 11 5C 11 5D 11 5E	13 00 13 04 13 00	v // REG_WR('h56, 'h00) // REG_WR('h57, 'h00) // REG_WR('h58, 'h00) // REG_WR('h59, 'h00) // REG_WR('h5A, 'h00) // REG_WR('h5B, 'h04) // REG_WR('h5D, 'h03) // REG_WR('h5E, 'h02)
 //Setup 11 BC 11 BD 11 BE 11 BF 11 C0 11 C1 11 C2 11 C3 11 B6 AA AA 11 B6 11 12 00 	13 00 13 00 13 00 13 00 13 00 13 00 13 00 13 00 13 00 13 00 13 00 13 00 13 00 13 00 13 04 13 04 13 04 13 04 13 04 13 01	[•] Data from Flash to Display RAM // REG_WR('hBC, 'h00) // REG_WR('hBD, 'h02) // REG_WR('hBE, 'h00) // REG_WR('hBF, 'h00) // REG_WR('hC0,'h00) // REG_WR('hC1, 'h00) // REG_WR('hC2, 'h00) // REG_WR('hC3, 'h00) // REG_WR('hC6, 'h00) // REG_WR('hC6, 'h00) // REG_WR('hC7, 'h04) // REG_WR('hC8, 'h00) // REG_WR('hC8, 'h00) // REG_WR('hC8, 'h04) // REG_WR('hC8, 'h04) // REG_WR('hB6, 'h01) // NOP // REG_WR('hB6, 'h00) // REG_WR('h12, 'h40) // Exit

Note: Power-on display unit requests program codes & display data, fonts, and required contents for the program must be stored in the same serial Flash. If Host needs to switch to another serial Flash then all the codes & display data etc. will need to be stored to that serial Flash too.

15.2 SPI Master

When transferring data through SPI master of LT768x, the two serial data lines will be sampled and synchronized with the serial clock signal SFCLK. Master will place the relevant information on the SFDO signal line for the slave device to catch data in the first half of the clock edge. There are four possible protocol modes of CPOL and CPHA that can be choosen by setting the bit[1:0] of Serial Master Control Register [SPIMCR2]. The master and slave device must operate under the same frequency.

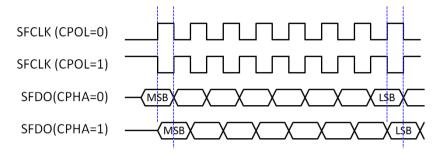


Figure 15-2: Master SPI Data Transfer

Transmitting Data Bytes

The SPI transmission can be initialized after the control register is setup. The method to initialize data is to write data to the Register SPIDR (REG[B8h]). The data written to SPDIR is actually written to a FIFO which has 16 bytes depths, also known as "Write-FIFO". Each write access adds a data byte to the Write-FIFO. When the SS_Active is set to 1 and the FIFO is not empty, LT768x will start to transfer the data that is first written into "Write-FIFO" to the Slave.

Receiving Data Bytes

Receiving data is done simultaneously with transmitting data; whenever a data byte is transmitted, a data byte is received. For each byte that needs to be read from a device, a dummy byte has to be written to the Write FIFO. This means using a dummy data write cycle to activate the SPI while receiving the data. Whenever the transfer is done, the received data is written into the "Read-FIFO". The "Read-FIFO" is the counterpart of the Write-FIFO. It is an independent 16 bytes deep FIFO. The FIFO contents can be read by reading from the Register [SPIDR] (REG[B8h]).

FIFO Overrun

When FIFO is full, writing a new data into "Write-FIFO" will overwrite the oldest data. When writing data to "Write-FIFO" via [SPIDR] registers causes overflow, it will result in data errors. Then the data transmitted using the SPI interface will not be the first data entered, but the data that finally enter the FIFO. As shown in the example of Figure 15-3, WP is the write pointer, when "Write-FIFO" is full, and then next data written in FIFO will overwrite the first one. RP is the read pointer. If "Read-FIFO" is not performed before "Write-FIFO" is overflow, RP will stay at the first place. Therefore, once the overflow occurs, "Read-FIFO" will get wrong data.

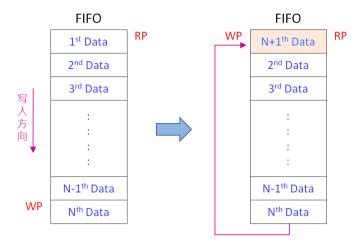


Figure 15-3: FIFO Overrun Example

The only way to recover from this situation is to reset the Write Buffer. Both the Read FIFO and the Write FIFO are reset when the Slave Select signal active [SS_ACTIVE] bit is cleared ('0'). Read FIFO overruns might be less destructive. Especially when the SPI bus is used to transmit data only, and the received data are simply ignored. So the Read FIFO overruns are irrelevant. But, if the SPI bus is used to transmit and receive data, it is important to keep the Read FIFO aligned. The easiest way to do this is to perform a number of dummy reads. The number of dummy reads should be equal to the amount of bytes transmitted modulo 16.

Ndummy_reads = Ntransmitted_bytes mod 16

Note: If the "Read-FIFO" is not empty, storing 16 of data is bound to cause overwritten. Therefore, before receiving every 16 bytes of data, the host must confirm if "Read-FIFO" is empty or not.

Reference Code for SPI Master Loop Test (Connect SFDO to SFDI)

REG_WR ('hBB, 8'h1f) ; REG_WR ('hB9, 8'b0001_1111) ;	//Divisor, configure SPI clock frequency // {1'b0, mask, SS#_sel, ss_active, ovfirqen, emtirqen, // cpol, cpha}, SS# low
REG_WR ('hB8, 8'h55) ;	// TX
REG_WR ('hB8, 8'haa) ;	// TX
REG_WR ('hB8, 8'h87) ;	// TX
REG_WR ('hB8, 8'h78) ;	// TX
wait (INT#) ;	
REG_RD ('hBA, acc) ;	
while (acc != 8'h84) begin	
\$display ("wait for FIFO empty	.");
REG_RD ('hBA, acc) ;	
end	
REG_WR ('hBA, 8'h04) ;	// clear interrupt flag
REG_RD ('hB8, 8'h55) ;	// RX
REG_RD ('hB8, 8'haa) ;	// RX
REG_RD ('hB8, 8'h87) ;	// RX
REG_RD ('hB8, 8'h78) ;	// RX
REG_WR ('hB9, 8'b0000_1111) ;	// {1'b0, mask, SS#_sel, ss_active, ovfirqen, emtirqen, // cpol, cpha}, SS# high.

15.3 Serial Flash Controller

LT768x builds in a SPI Master interface for Serial Flash/ROM, supporting for protocol of 4-BUS (Normal Read), 5-BUS (FAST Read), Dual mode 0, Dual mode 1 and Mode 0/Mode 3. Serial Flash/ROM function can be used for FONT mode and DMA mode. FONT mode means that the external serial Flash/ROM is treated as a source of character bitmap. DMA mode means that the external Flash/ROM is treated as the data source of DMA (Direct Memory Access). Host can speed up the data transfer to display memory and does not need to intervene in this mode.

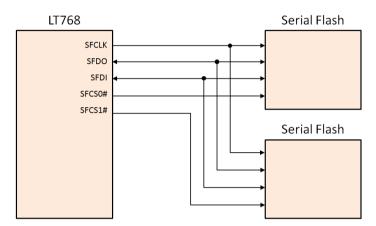


Figure 15-4: Application Circuit of Serial Flash/ROM

About Serial Flash/ROM read command protocol setting, please refer to Table 15-2 as below:

REG [B7h] Bit[3:0]	Read Command Code
000xb	1x Read Command Code – 03h Normal read speed. Flash to LT768x data input is SFDI pin. Without dummy cycle between address and data.
010xb	1x Read Command Code – 0Bh To some Serial Flash provide Faster read speed. Flash to LT768x data input is SFDI pin. Eight dummy cycles inserted between address and data.
1x0xb	1x Read Command Code – 1Bh To some Serial Flash provide High read speed. Flash to LT768x data input is SFDI pin. Sixteen dummy cycles inserted between address and data.
xx10b	2x Read Command Code – 3Bh Interleaved data input on SFDI and SFDO pins. Eight dummy cycles inserted between address and data phase. (Mode 0)
xx11b	2x Read Command Code – BBh Address output & data input interleaved on SFDI and SFDO pins. Four dummy cycles inserted between address and data phase. (Mode 1)

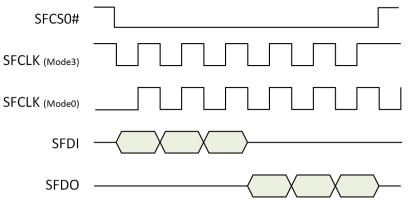


Figure 15-5: Mode 0 and Mode 3 Protocol

Figure 15-6 is a Timing diagram of Read Commands for SPI Flash Memory. If REG[B7h] bit5=0, the address line is 24bits and requires 24 clock. If REG[B7h] bit5=0, the address line is 32bits and requires 32 clock.

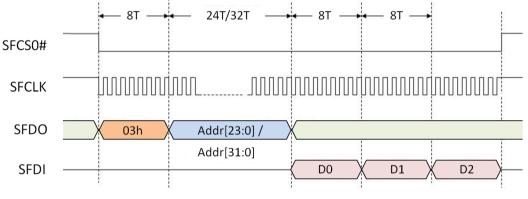


Figure 15-6: Normal Read Command of SPI Flash

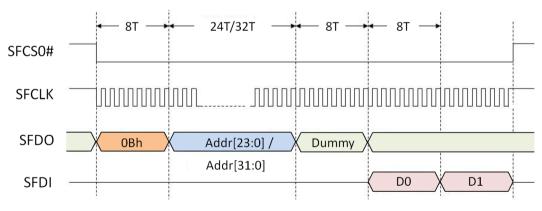


Figure 15-8 shows flash to LT768x data input as interleaved input, and data input appears on SFDI and SFDO pins. If REG[B7h] bit5=0 represents an address line of 24bits, it requires 24 clocks. If REG[B7h] bit5=1 represents an address line of 32bits, it requires 32 clocks.

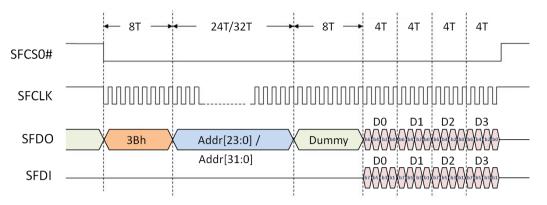


Figure 15-8: SPI Flash Read Command (Data and Address are Interleaved)

Figure 15-9 shows LT768x address output and data input are interlaced, data and address are interleaved on SFDI and SFDO pins. If REG[B7h] bit5=0 on behalf of the address line is 24bits, because it is interleaved input so only 12 of clock. If REG[B7h] bit5=1 represents an address line of 32bits, only 16 clock are required.

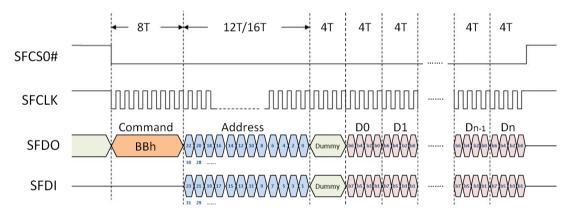


Figure 15-9: SPI Flash Read Command (Data and Address are Interleaved)

15.3.1 External Serial Flash

External Flash Memory can be used as a source of the image data. In Graphics Mode, Host can use DMA (Direct Memory access) mode to access data of External Flash Memory. It means the Flash Memory can be used as the source of DMA, and developer can store a large amount of display data in advance. Therefore, Host does not need to take a lot of time to transfer large and commonly used graphics data to LT768x's Display RAM.

The data format of external Serial Flash Memory must be consistent with the format of the Display RAM. The graphic data format for Flash Memory are as follows:

Addr	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Addr	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0001h	R_1^7	R_1^{6}	R_1^{5}	G_1^{7}	G_1^{6}	G_1^{5}	B ₁ ⁷	B ₁ ⁶	0000h	R_0^7	R_0^{-6}	R_0^{-5}	G_0^{7}	G_0^{-6}	G_0^{5}	B_0^{7}	B_0^{6}
0003h	R_3^{7}	R_3^{-6}	R_3^{5}	G_3^{7}	G_3^{6}	G_{3}^{5}	${\sf B_{3}}^{7}$	B_3^{6}	0002h	R_2^{7}	R_2^{6}	R_2^{5}	G_2^{7}	G_2^{6}	G_2^{5}	B_2^{7}	B_2^{6}
0005h	R_5^{-7}	R_5^{-6}	R_5^{-5}	$G_5^{\ 7}$	G_5^{6}	${\sf G}_5^{\ 5}$	$B_5^{\ 7}$	B_5^{6}	0004h	R_4^7	R_4^{6}	${\sf R_4}^5$	$G_4^{\ 7}$	G_4^{6}	G_4^{5}	$B_4^{\ 7}$	B_4^{6}
0007h	R_7^7	R_7^6	R_{7}^{5}	G ₇ ⁷	G_{7}^{6}	G ₇ ⁵	B ₇ ⁷	B ₇ ⁶	0006h	R_6^{-7}	R_6^6	R_6^{-5}	G_6^{-7}	G_6^{-6}	G_6^{5}	B_6^7	B_6^6
0009h	R_9^{7}	R_9^6	R_9^{5}	G_9^{7}	G_9^{6}	${\sf G_9}^{5}$	B_9^7	B_9^6	0008h	R_8^{-7}	R_8^{6}	${\sf R_8}^{5}$	G_8^{7}	G_8^{6}	G_8^{5}	B ₈ ⁷	B ₈ ⁶
000Bh	R ₁₁ ⁷	R ₁₁ ⁶	R_{11}^{5}	G ₁₁ ⁷	$G_{11}^{\ 6}$	G ₁₁ ⁵	B ₁₁ ⁷	B ₁₁ ⁶	000Ah	R ₁₀ ⁷	R_{10}^{6}	R ₁₀ ⁵	G ₁₀ ⁷	G_{10}^{6}	${G_{10}}^{5}$	B ₁₀ ⁷	B ₁₀ ⁶

Table 15-3:	8bpp	Image	Data	Format	of	Serial Fla	ish
1 4 5 1 6 6					••••	001101110	

Table 15-4: 16bpp Image Data Format of Serial Flash

Order	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Addr	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	R_0^7	R_0^{-6}	R_0^{5}	R_0^4	R_0^{3}	G_0^{7}	G_0^{6}	G_0^{5}	0000h	G_0^4	G_0^{3}	G_0^2	B_0^{7}	B_0^{6}	${\sf B_0}^5$	B_0^4	B_0^{3}
2	R_1^7	R_1^{6}	R_1^{5}	R_1^4	R_1^{3}	G_1^{7}	G_1^{6}	G_1^{5}	0002h	G_1^4	G_{1}^{3}	G_1^2	B ₁ ⁷	B ₁ ⁶	B1 ⁵	B_1^4	B ₁ ³
3	R_2^{7}	R_2^{6}	R_2^{5}	R_2^4	R_2^{3}	G_2^{7}	G_2^{6}	G_2^{5}	0004h	G_2^4	G_2^{3}	G_2^2	B ₂ ⁷	B_2^{6}	B_{2}^{5}	B_2^4	B ₂ ³
4	R_3^{7}	R_3^{6}	R_{3}^{5}	R_3^4	R_3^{3}	G_3^{7}	G_3^{6}	G_3^{5}	0006h	G_3^4	G_{3}^{3}	G_3^2	B_{3}^{7}	B_3^{6}	${\sf B_{3}}^{5}$	B_3^4	B ₃ ³
5	R_4^{7}	$R_4^{\ 6}$	R_4^{5}	R_4^4	R_4^{3}	$G_4^{\ 7}$	$G_4^{\ 6}$	G_4^{5}	0008h	G_4^4	$G_4^{\ 3}$	G_4^2	$B_4^{\ 7}$	B_4^{6}	B_4^{5}	B_4^4	B_4^3
6	R_5^{7}	R_5^{6}	${\sf R_{5}}^{5}$	R_5^4	R_{5}^{3}	$G_5^{\ 7}$	G_5^{6}	$G_5^{\ 5}$	000Ah	G_5^4	${\sf G}_5^{\ 3}$	$G_5^{\ 2}$	${\sf B}_{5}^{\ 7}$	B_5^{6}	${\sf B}_{5}^{5}$	B_5^4	B_{5}^{3}

Table 15-5: 24bpp Image Data Format of Serial Flash

Order	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Addr	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	G_0^{7}	G_0^{6}	G_0^{5}	G_0^4	G_0^{3}	G_0^2	G_0^{-1}	G_0^{0}	0000h	B_0^{7}	B_0^{6}	B ₀ ⁵	B_0^4	B_0^{3}	B_0^{2}	B_0^{1}	B_0^0
2	B ₁ ⁷	B_1^{6}	B ₁ ⁵	B_1^4	B_{1}^{3}	B ₁ ²	B_1^{1}	B_1^{0}	0002h	R_0^{7}	R_0^{-6}	R_0^{-5}	R_0^4	R_0^{3}	R_0^2	R_0^{-1}	R_0^0
3	R_1^7	R_1^{6}	R_{1}^{5}	R_1^4	R_1^{3}	R_1^2	R_1^{-1}	R_1^0	0004h	G_1^{7}	G_1^{6}	G ₁ ⁵	G_1^4	G_1^{3}	G_1^2	G_1^{-1}	G_1^0
4	G_2^{7}	G_2^{6}	G_2^{5}	G_2^4	G_2^{3}	G_2^2	G_2^{-1}	G_2^{0}	0006h	B ₂ ⁷	B_2^{6}	B ₂ ⁵	B_2^4	B_{2}^{3}	B_2^2	B_2^{1}	B_2^0
5	${\sf B_{3}}^{7}$	B_3^6	B_{3}^{5}	B_3^4	B_3^{3}	B_{3}^{2}	B_3^{1}	B_3^{0}	0008h	R_2^{7}	R_2^{6}	R_2^{5}	R_2^4	R_2^{3}	R_2^2	R_2^{-1}	R_2^0
6	R_3^{7}	R_3^{6}	R_3^{5}	R_3^4	R_3^{3}	R_3^2	R_3^{-1}	R_3^{0}	000Ah	G_3^{7}	G_3^{6}	G_{3}^{5}	G_3^4	G_{3}^{3}	G_3^2	G_3^{-1}	G_3^{0}

DMA function provides a faster method for users to update/transfer mass data to display memory. The only source of DMA function in LT768x is external Serial Flash/ROM. There are two kinds of data type defined for the DMA. One is Linear Mode and the other is Block Mode. It provides a flexible selection for user applications. The destination of DMA function is dominated by active window in display memory. When DMA function is active, the specific data from Serial Flash/ROM will be transferred one by one to Display Memory by LT768x automatically. After the DMA function is completed, LT768x will generate an interrupt to notify the Host. Please refer to the following sections for more information.

15.3.2 DMA in Linear Mode for External Serial Flash

The DMA Linear Mode is used to send CGRAM data for Display RAM. The color depth of the Active window must be set as 8bpp.

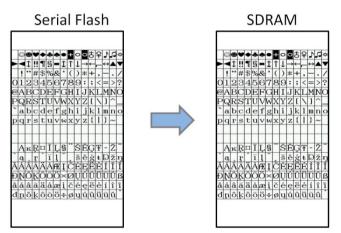


Figure 15-10: DMA in Linear Mode for External Serial Flash

15.3.3 DMA in Block Mode for External Serial Flash

DMA access in this block mode is primarily used to transfer graphic data. The process unit is pixel. Please refer to following diagram and flowchart.

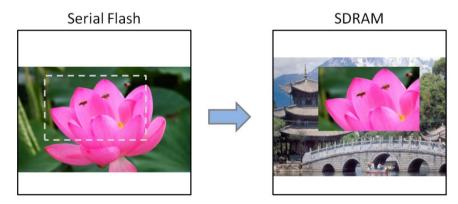


Figure 15-11: DMA in Block Mode for External Serial Flash

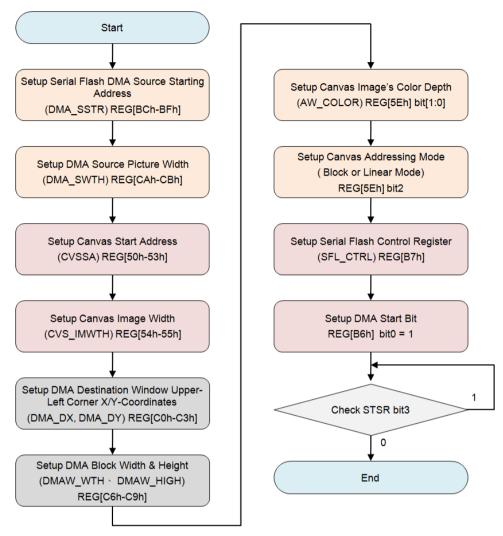


Figure 15-12: DMA Data Transfer Flowchart (Polling Mode)

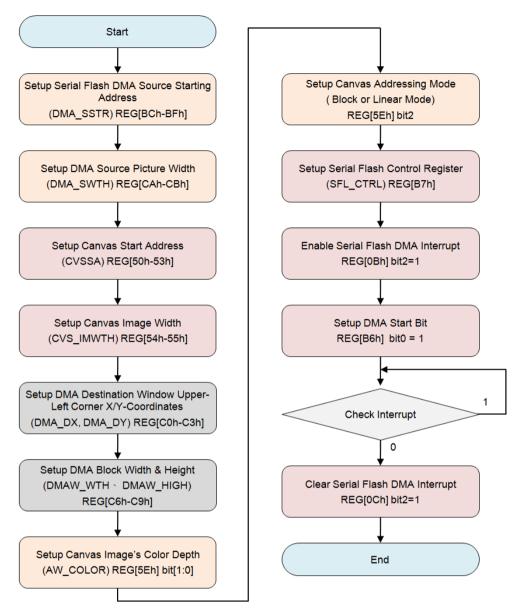


Figure 15-13: DMA Data Transfer Flowchart (Interrupt Mode)

15.4 I2C Master

I2C Master is a two-wires, bi-directional serial bus that provides a simple and efficient method of data exchange between devices.

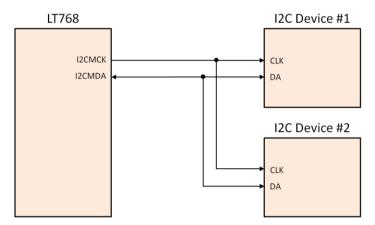
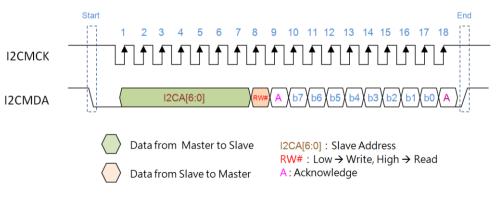


Figure 15-14: Application Circuit of LT768x I2C Master


LT768x supports 100Kbps and 400Kbps transfer rate for I2C bus. The formula of I2C Master clock(I2CMCK) is as the following:

I2CMCK = CCLK / [5* (Prescaler + 2)]

For example, if I2CMCK is 100 KHz and CCLK is 50 MHz, pre-scalar must be set to 98. Data transfer between I2C Master and Slave is synchronized by I2CMCK on the basis of byte. Each data byte is 8bit. There is one I2CMCK pulse for each I2CMDA bit and the MSB will be transmitted first. And then an acknowledge bit will be transmitted for each transferred byte. Each bit is processed during the high period of I2CMCK so that the I2CMDA could be changed only during the low period of I2CMCK and must be held stable during the high period of I2CMCK.

The standard Communication Protocol of I2C consists of four parts:

- Start Signal
- Slave Address Transfer
- Data Transfer
- End Signal

Figure 15-15: I2C Communication Protocol

Example 1. Write 1 Byte data to Slave Device:

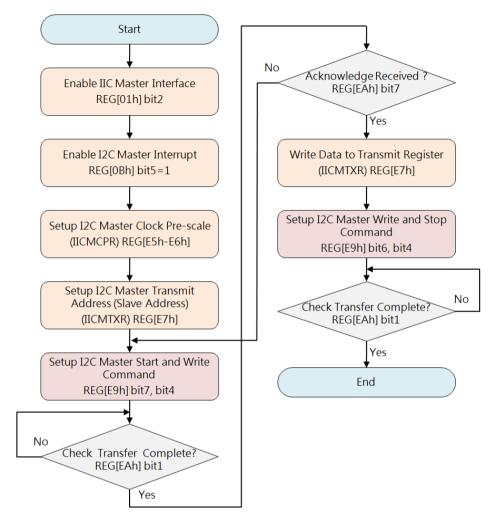
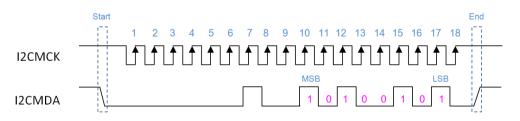



Figure 15-16: Write Data to Slave

Example 2. Read 1 Byte Data from Slave Device:.

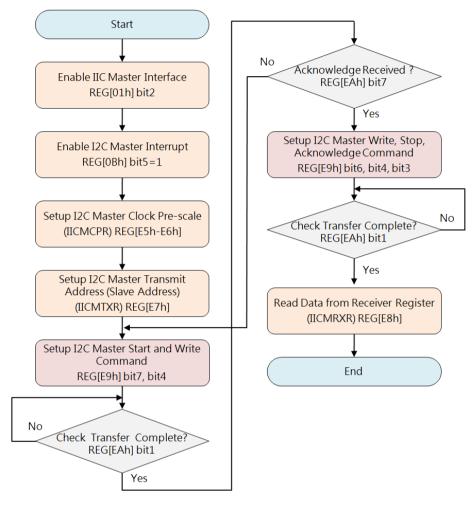


Figure 15-18: Read Data from Slave

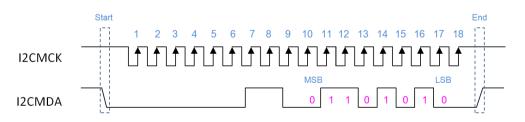


Figure 15-19: Read Data "6A" from Slave (Address=0x01)

Note: The I2CMCK and I2CMDA are multiplex pins that share with KI[0] and KO[0]. And only LQFP-128pin package (LT7681, LT7683, LT7686) supports I2C Master function.

LT768x_DS_ENG / V4.2

16. Keypad-Scan

LT768x provides a set of 5x5 keyboard scanning circuits. In addition to saving MCU IO interface, it can also reduce the hardware and software loading of MCU. By setting serveral registers, Host can easily get the keyboard data. The following diagram is the basic keyboard application circuit.

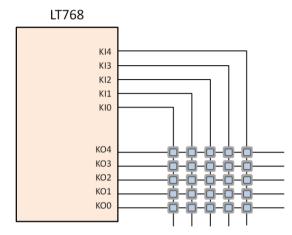


Figure 16-1: Application Circuit of Keypad-scan

16.1 Keypad-scan Operation

The embedded Keypad-scan features of LT768x are as below:

- Support up to 5*5 Keypad matrix
- Programmable setting of sampling times and scan frequency of Keypad-scan
- Adjustable long Key-press timing
- Support Multi Key-press
- Support Key-stroke wakeup function

The Keypad State Register KSCR is used to control the function of Keypad-scan, such as sampling time, sampling frequency, and enabling long keystrokes. If the key is pressed, The Host can also get the interrupt to know whether any keypad is pressed. The Register KSCR2 bit[1:0] records the number of keystrokes pressed. Host can get the corresponding key-code of pressed keys by reading register KSDR.

		-		-	
	KI0	KI1	KI2	KI3	KI4
KO0	00h	01h	02h	03h	04h
KO1	10h	11h	12h	13h	14h
KO2	20h	21h	22h	23h	24h
KO3	30h	31h	32h	33h	34h
KO4	40h	41h	42h	43h	44h

Table 16-1: Key-code of Normal-press Key	Table 16-1: Key	y-code of	Normal-pro	ess Key
--	-----------------	-----------	------------	---------

Table 16-1 and Table 16-2 show the corresponding Key-code of Normal-press key and Long-press key. The Key-code will be stored in the Registers KSDR0 ~ KSDR2 when there is any key pressed. If users press the Keypad button for a long time, then LT768x will correspond different key-code saved in Registers (KSDR0 ~ KSDR2).

	KI0	KI1	KI2	KI3	KI4
KO0	80h	81h	82h	83h	84h
K01	90h	91h	92h	93h	94h
KO2	A0h	A1h	A2h	A3h	A4h
KO3	B0h	B1h	B2h	B3h	B4h
KO4	C0h	C1h	C2h	C3h	C4h

Table 16-2: Key-code of Long-press Key

When multiple keystrokes are pressed, up to three key-code will be presented in Register KSDR0, KSDR1 and KSDR2.

Note: The key-codes stored in Register (KSDR0 ~ KSDR2) is related to the location of the keys, not to the sequence of keys. For example, if the key code 0x34, 0x00, 0x22 are pressed at the same time, then the KSDR0 ~ KSDR2 may store the key-code as follows:

KSDR0 = 0x00 KSDR1 = 0x22 KSDR2 = 0x34

The following is the related Register of Keypad-scan functions:

Register Address	Register Name	Description
		bit6: Long-press Key Enable
REG[FBh]	KSCR1	bit[5:4]: Short Key De-bounce Times
		bit[2:0]: Keypad Row Scan Time
		bit7: Keypad-Scan Wakeup Enable
REG[FCh]	KSCR2	bit[4:2]: Long-press Key Recognition Factor
		bit[1:0]: Numbers of Key Pressed
REG[FDh ~ FFh]	KSDR0 ~ 2	Key Strobe Data1 ~ Data3
REG[01h]	CCR	bit5: Keypad-Scan Enable/Disable
REG[0Bh]	INTEN	bit3: Keypad-Scan Interrupt Enable
REG[0Ch]	INTF	bit3: Keypad-Scan Interrupt Flag

The Host can use two ways to check if there is any keypad pressed:

- Host checks the Keypad-scan Status Register
- Host checks the Interrupt Signal

_T768x

If the Keypad Interrupt Enable (REG[0Bh] bit3=1), then the interrupt signal will be active when keypad is pressed. When interrupts occur, the Keypad-scan interrupt state flag (REG[0Ch] bit3) will be 1. So users must clear this Interrupt status flag after reading the key-code, otherwise there will be no next interruptions.

In addition, LT768x supports "key-press wakeup" in power-saving mode. After the register are setup completely, any keystroke triggers can awaken LT768x from sleep mode. In order to recognize the Wake-up event, Host can use software to poll LT768x interrupt status bit. As shown in Figure 16-2.

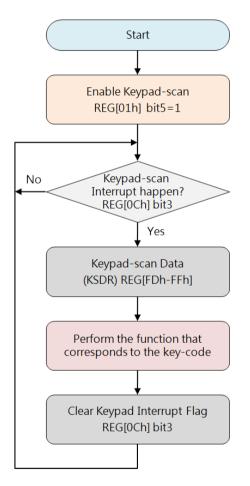


Figure 16-2: Flowchart to check Key-pad Interrupt (S/W Polling Mode)

The Host can also be notified by hardware interrupt signal INT#, as shown in the Figure 16-3 flowchart.

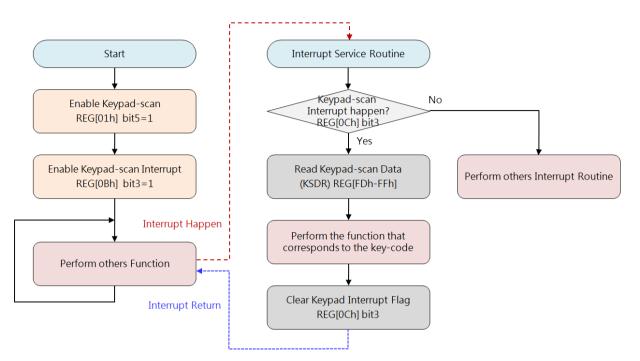


Figure 16-3: Flowchart to check Key-pad Interrupt (H/W Interrupt Mode)

LT768x_DS_ENG / V4.2

LT768x

17. GPIO Interface

LT768x provides many GPIO signals that can be extended as MCU I/O interfaces. Usually these GPIO signals are shared with other control signals. Please refer to Table 17-1 as below, and note these GPIO signals are available only when their mapping control signals are disabled.

GPIO Port	Shared Signals
GPIOA[7:0]	DB[15:8]
GPIB[4],	KI[0]
GPOB[4]	КО[0]
GPIB[3:0]	{A0, WR#, RD#, CS#}
GPIOC[7]	PWM[0]
GPIOC[4:0],	{ SFCS1#, SFCS0#, SFDI, SFDO, SFCLK }
IOD[7:0]	PD[18, 2, 17, 16, 9, 8, 1, 0]

Table 17-1: GPIO Port vs. Shared Signals

Table 17-2 is a supported GPIO signal list for different models of LT768x. These GPIO signals can be set to output or input by REG[F0h-F6h]. Please refer to Chapter 19 - Register Description.

Model	GPIO Number	GPIO Port
LT7681		GPIOA[7:0]
	28	GPIB[4], GPOB[4], GPIB[3:0]
LT7683		GPIOC[7], GPIOC[4:0],
LT7686		GPIOD[7:0]
LT7680A		GPIOA[7]
LT7680B	7	GPIOC[7], GPIOC[4:0]

Table 17-2: The Supported GPIO Port for LT768x

18. Power Management

LT768x has four operation modes, distinguished by the amount of power consumption, from high to Low: Normal mode, Standby mode, Suspend mode, and Sleep mode. The four modes of operation are set by the register REG[DFh]. Following is the comparison table for the related clock action of the four operation modes:

	Normal Mode	Standb	y Mode	Suspen	d Mode	Sleep Mode	
ltem	PLL Enable	Parallel MCU	Serial MCU	Parallel MCU	Serial MCU	Parallel MCU	Serial MCU
MCLK	MPLL Clock	MPLL Clock	MPLL Clock	OSC	OSC	Stop	Stop
CCLK	CPLL Clock	OSC	OSC	Stop	OSC	Stop	OSC
PCLK	PPLL Clock	Stop	Stop	Stop	Stop	Stop	Stop
CPLL	ON	ON	ON	OFF	OFF	OFF	OFF
MPLL	ON	ON	ON	OFF	OFF	OFF	OFF
PPLL	ON	ON	ON	OFF	OFF	OFF	OFF

Table 18-1: Power Management vs	. Clock Active
Tuble to 1.1 ower management va	

Note:

- 1. When LT768x enters the power saving mode, the LCD interface will not output the signal. Therefore, before entering the power-saving mode, Host needs to issue "display off" or "power off" to the LCD module to avoid LCD polarization damage.
- 2. The "OSC" means external X'tal oscillator.

18.1 Normal Mode

In this mode, three of the internal PLL functions are working normally. That is, Host setup Registers to control three PLL to generate CCLK (Core Clock), MCLK (Display RAM Clock), and PCLK (LCD scan Clock) so that the whole system can work normally. Because it will take some time for the PLL to work steadily, Host must first check if the PLL frequency is in a stable state through register 01h bit7.

18.2 Standby Mode

If setup REG[DFh] bit[1:0] to 01b, LT768x will enter Standby mode. The System Clock (CCLK) and LCD-Scan Clock (PCLK) will stop. The Display RAM Clock will remain active and still be provided by MCLK.

Enter Standby Mode:

- Select Standby Mode (REG[DFh] bit[1:0] = 01b)
- Setup REG[DFh] bit7 to 1 (Enter Standby Mode)
- Host may check the bit1 of Status Register (STSR), and wait for this bit to become 1 to make sure LT768x enters Standby mode.

Back to Normal Mode:

- Setup REG[DFh] bit7 to 0 (Quit from Standby Mode)
- Host may check the bit1 of Status Register (STSR), and wait for this bit to become 0 to make sure LT768x is back to Normal Mode.

18.3 Suspend Mode

If REG[DFh] bit[1:0] is set to 10b, LT768x will enter Suspend mode. The System Clock (CCLK), Display RAM Clock(MCLK) and LCD-Scan Clock (PCLK) will stop. The clock of Display RAM will be provided by OSC Clock.

Enter Suspend Mode:

- Setup appropriate Display RAM(SDRAM) Refresh Clock based on the OSC frequency.
- Select Suspend Mode(REG[DFh] bit[1:0] = 10b)
- Setup REG[DFh] bit7 to 1 (Enter Suspend Mode)
- Host may check the bit1 of Status Register (STSR), and wait for this bit to become 1 to make sure LT768x enters Suspend Mode.

Back to Normal Mode:

- Setup REG[DFh] bit7 to 0 (Quit from Suspend Mode)
- Host may check the bit1 of Status Register (STSR), and wait for this bit to become 0 to make sure LT768x is back to Normal Mode.

18.4 Sleep Mode

If REG[DFh] bit[1:0] is set to 11b, LT768x will enter Sleep Mode, and all of Clocks and PLL will stop operating.

Enter Sleep Mode:

- Select Sleep Mode (REG[DFh] bit[1:0] = 11b)
- Setup REG[DFh] bit7 to 1 (Enter Sleep Mode)
- If REG[E0h] bit7 is 0, the Display RAM will enter Power Down mode before LT768x enters Sleep mode. If REG[E0h] bit7 is 1, the Display RAM will enter Refresh mode.
- If Host interface is Parallel Mode, then LT768x will stop OSC. If Host interface is Serial Mode, then OSC will not be stopped.
- Host may check the bit1 of Status Register (STSR), and wait for this bit to become 1 to make sure LT768x enters Sleep Mode.

Back to Normal Mode:

- Setup REG[DFh] bit7 to 0 (Quit from Sleep Mode)
- ◆ If OSC is stopped in Sleep mode, the Host has to enable OSC.
- The Host may check the bit1 of Status Register (STSR), and wait for this bit to become 0 to make sure LT768x is back to Normal Mode.

19. Register Description

LT768x provides a compatible 4 forms of Host interface, and the internal registers are read and written through these Host interface cycles. LT768x contains a Status Register and many Instruction Registers. Status Registers can read data through the state reading period, and it can only be read and cannot be written. Instruction Registers can control most of the functions through the "Command Write" cycle and the "Data Write" cycle. During the "Command Write" cycle, the address of the register is specified, and then during the "Data Wirte" cycle, data can be written to the specified register. When a specified register data is to be read, the master will need to send the "Command write" cycle first. Then use the "Data Read" cycle to read the data. In other words, "Command Write" is to set the register address, and "Data Read" is to read the register data.

Host Interface				8080 Type MCU 6800 Type MC		pe MCU		
Cycle	CS#	A0	RD# EN	WR# RW#	RD# EN	WR# RW#	Action Description	
Command Write	0	0	1	0	1	0	Write Address of Register	
Status Read	0	0	0	1	1	1	Read Status Register Data	
Data Write	0	1	1	0	1	0	Write Data to Register or Memory	
Data Read	0	1	0	1	1	1	Read Data from Register or Memory	

Table 19-1: Host	Interface Cycle
------------------	-----------------

All of the Registers of LT768x are described as below. Each register contains 8bits data. The register table includes the detail description, default value and access attribute (RO: Read Only, WO: Write Only, RW: Readable and Writeable).

19.1 Status Register

Bit	Description	Default	Access
	Memory Write FIFO Full Indicate		
	0: The FIFO of Memory Write not Full		
7	1: The FIFO of Memory Write is Full	0	RO
	Host can write data to memory only if the Memory Write FIFO is not full.		
6	Memory Write FIFO Empty Indicate		
	0: The FIFO of Memory Write not Empty		
	1: The FIFO of Memory Write is Empty	1	RO
	When the Memory Write FIFO is empty, Host can continuously write 8bpp data with 64 pixels, 16bpp data with 32 pixels or 24bpp data with 16 pixels.		

Bit	Description	Default	Access
	Memory Read FIFO Full Indicate		
	0: The FIFO of Memory Read not Full		
5	1: The FIFO of Memory Read is Full	0	RO
	When the Memory Read FIFO is Full, Host can continuously read 8bpp data with 64 pixels, 16bpp data with 32 pixels or 24bpp data with 16 pixels.		
	Memory Read FIFO Empty Indicate		
	0: The FIFO of Memory Read not Empty		
4	1: The FIFO of Memory Read is Empty	1	RO
	When the Memory Read FIFO is not Empty, Host can continuously read pixel data from Memory.		
	Core Task is Busy, Fontwr_Busy		
	This bit represents whether the on-going action is completed (BTE, Geometry engine, DMA, text writing, or graphic writing).		
	0: The action is completed or idle.		
	1: The action is not completed, or in a busy state.		
3	When the Host program switches text and graphic mode, or changes the base diagram related settings, the program must first verify if the LT768x is idle.	0	RO
	Note: In text mode, before program changes text rotation, line spacing, character spacing, foreground color, background color, and text/graphics settings, Host must confirm this bit is 0.		
	Display RAM Ready for Access		
	0: Display RAM is not ready for access		
2	1: Display RAM is ready for access	0	RO
	Before checking this bit, Host has to setup REG[E4h] bit0 "SDR_INIT" as 1.		
	Operation Mode Status		
	0: Normal operation state		
	1: Inhibit operation state		
1	Inhibit operation state means internal reset event is running, or initial display is running, or the chip enters power saving state. In power saving state, this bit becomes 1 until PLL clock stops.	0	RO
	Interrupt Pin State		
0	0: No interrupt activated	0	RO
	1: Interrupt activated		

19.2 Configuration Registers

REG[00h] Software Reset Register (SRR)

Bit	Description	Default	Access
7	 Reconfigure PLL frequency Write "1" to this bit will reconfigure PLL frequency. Note: 1. When users change PLL relative parameters, PLL clock will not be changed immediately, users must set this bit as "1" again. 2. Users may read (check) this bit to find out whether PLL clock is changed or not. 	0	RW
6-1	Reserved	0	RO
0	Software Reset (Reconfigure PLL Frequency) 0: Normal Operation. 1: Software Reset. The bit will be auto cleared after reset. Software Reset only resets internal state machine. Configuration Registers value will not be reset. Therefore, all read-only flag in the register will return to its initial value. Users should actively make sure the flag is in desired state.	0	WO
0	 Warning Condition Flag 0: No warning operation occurred 1: Warning condition occurred. Please refer to REG[E4h] bit3 description. 	0	RO

REG[01h] Chip Configuration Register (CCR)

Bit	Description	Default	Access
7	Check PLL Ready Host may read (check) this bit to find out whether PLL clock is ready or not. Read "1" means PLL clock is ready and switched successfully.	0	RW
6	 Mask WAIT# on CS# De-assert 0: No Mask, WAIT# keep assert if internal state keep busy and cannot accept next R/W cycle, no matter CS# assert/de-assert. If Host cycle cannot be extended while WAIT# keeps low, Host program should poll WAIT# and wait for it to become high, then start next access. 1: Mask, WAIT# de-assert when CS# de-assert. Used to automatically extend Host cycle by Wait#. 	1	RW
5	Keypad-scan Enable/Disable 0: Disable 1: Enable	0	RW

Bit	Description	Default	Access
4-3	TFT Panel I/F Setting 00b: 24bits TFT Output 01b: 18bits TFT Output 10b: 16bits TFT Output 11b: Without TFT Output Other unused TFT output pins are set as GPIO or Key–Scan function.	01b	RW
2	I2C Master Interface Enable/Disable 0: Disable (GPIO Function) 1: Enable (I2C Master Function) This bit has higher priority than Keypad-scan Enable bit. i.e. if I2C master and Keypad-scan are enabled simultaneously, then KI[0] and KO[0] will become I2C function & other KI/KO pins still keep Keypad-scan function.	0	RW
1	Serial Flash or SPI Interface Enable/Disable 0: Disable (GPIO Function) 1: Enable (SPI Master Function)	0	RW
0	 Host Data Bus Width Selection 0: 8bits Data Bus 1: 16bits Data Bus If Serial Host I/F is selected or if the system is in initial display operation period, LT768x will force this bit as 0 and only allow 8bits access. 	0	RW

REG[02h] Memory Access Control Register (MACR)

Bit	Description	Default	Access
7-6	Host Read/Write Image Data Format Oxb: Direct Write, for below I/F format: 1.8bits MCU I/F. 2.16bits MCU I/F with 8bpp data mode 1 & 2. 3.16bits MCU I/F with 16/24bpp data mode 1. 4.Serial SPI/I2C I/F. 10b: Mask high byte of each data (ex. 16 bit MPU I/F with 8-bpp data mode 1) 11b: Mask high byte of even data (ex. 16 bit MPU I/F with 24-bpp data mode 2)	0	RW
5-4	Host Read Memory Direction (Only for Graphic Mode) 00b: Left→Right then Top→Bottom. 01b: Right→Left then Top→Bottom. 10b: Top→Bottom then Left→Right. 11b: Bottom→Top then Left→Right. Ignored if canvas in linear addressing mode.	0	RW
3	NA	NA	NA
2-1	 Host Write Memory Direction (Only for Graphic Mode) 00b: Left→Right then Top → Bottom (Original) 01b: Right → Left then Top → Bottom (Horizontal Flip) 10b: Top → Bottom then Left → Right (Rotate right 90° & Horizontal flip) 11b: Bottom → Top then Left → Right (Rotate left 90°) Ignored if canvas in linear addressing mode. 	0	RW
0	NA (must keep it as 0)	0	RO

REG[03h] Input Control Register (ICR)

Bit	Description	Default	Access
7	Interrupt Pin Active Level 0: Low Active 1: High Active	0	RW
6	External Interrupt Signal - PSM[0] Pin De-bounce 0: Without De-bounce 1: Enable De-bounce (1,024 OSC Clock)	0	RW
5-4	External Interrupt Signal - PSM[0] Pin Trigger Type 00b: low level trigger 01b: falling edge trigger 10b: high level trigger 11b: rising edge trigger	00b	RW
3	NA	NA	NA
2	Text Mode Enable 0: Graphic mode 1: Text mode Before toggling this bit, users must make sure core task busy bit in status register is busy or idle. This bit is always 0 (in graphic mode) if canvas' address mode is linear mode.	0	RW
1-0	 Memory Port Read/Write Destination Selection 00b: Image buffer (Display RAM) for image data, pattern, user-characters. Support Read-modify-Write. 01b: Gamma table for Color Red/Green/Blue. Each color's gamma table has 256 bytes. Users need to specify desired gamma table and continuously write 256 bytes. 10b: Graphic Cursor RAM (only accept low 8-bits MPU data, similar to normal register data r/w.), "Graphic Cursor RAM read" is not supported. It contains 4 graphic cursor sets. Each set has 128x16 bits. Users need to specify target graphic cursor set and continuously write 256 bytes. 11b: Color palette RAM. It is 64x12 bits SRAM. Since MCU writes 8 bits data at a time, when it writes every even byte, only the lower 4bits will be stored to the RAM. "Color palette RAM read" is not supported. Users need to continuously write 128 bytes. 	0	RW

REG[04h] Memory Data Read/Write Port (MRWDP)

Data REG case Note	 A. Image data in Display RAM: Set to 8/16-bits based on the MCU I/F bit width. Host R/W image data format can be set. Canvas color depth and related settings can also be set in block mode. B. Pattern data for BTE operation in Display RAM: Set to 		
REG case Note	 G[03h][1:0]. Continuous data write cycle can be accepted in a of writing great amount of data. A. Image data in Display RAM: Set to 8/16-bits based on the MCU I/F bit width. Host R/W image data format can be set. Canvas color depth and related settings can also be set in block mode. B. Pattern data for BTE operation in Display RAM: Set to 		
,	 A. Image data in Display RAM: Set to 8/16-bits based on the MCU I/F bit width. Host R/W image data format can be set. Canvas color depth and related settings can also be set in block mode. B. Pattern data for BTE operation in Display RAM: Set to 		
	8/16-bits based on the MCU I/F bit width. Host R/W image data format can be set. Canvas color depth and related settings can also be set in block mode. Active window's width and height should be set as 8x8 or 16x16 depending on users needs.		
	C. User-characters in Display RAM: Set to 8/16-bits based on the MCU I/F bit width. Host R/W image data format can be set, and canvas is set to linear mode.		
	D. Character code: only low 8-bits MCU data are accepted, similar to normal register R/W. For two bytes character code, input high byte first. For user defined Character, code < 8000h is half size, code >= 8000h is full size.		
7-0	E. Gamma table data: only low 8-bits MPU data are accepted. Users must set "Select Gamma table sets([3Ch] Bit6-5)" to clear internal Gamma table's address counter then start to write data. Users should program 256 bytes data to memory data port.		RW
ł	F. Graphic Cursor RAM data: only low 8-bits MPU data are accepted. Users must set "Select Graphic Cursor sets" bits to clear internal Graphic Cursor RAM address counter then start to write data.		
	G. Color palette RAM data: only low 8-bits MPU data are accepted. Users must program full Color palette RAM in a continuous 128 byte data, and write to memory data port, and cannot change register address during the writing process.		
Rea	d Function: Memory Read Data		
Con	read data from memory, REG[03h][1:0] has to be set. tinuous data read cycle can be accepted in case of reading t amount of data.		
be i shou	e1: when reading different port address, a dummy read must ssued. The first data read cycle is dummy read and data ald be ignored. Graphic Cursor RAM & Color palette RAM do not support data read function.		
	e2: No matter what the color depth setting is, data reading is ed on 4 bytes.		
regis	e3: If users want to change the address of the written sters, but there are data already written to Display RAM, s must make sure		
	write FIFO is empty before changing register number; (2) e task busy status bit becomes idle.		

19.3 PLL Setting Register

REG[05h] PCLK PLL Control Register 1 (PPLLC1)

Bit	Description	Default	Access
7-6	PCLK Output Divider Ratio, OD[1:0] 00b: Divided by 1. 01b: Divided by 2. 10b: Divided by 3. 11b: Divided by 4.	0	RW
5-1	PCLK Input Divider Ratio, R[4:0] The value should be 2~31.	10	RW
0	PCLK Feedback Divider Ratio of Loop, N[8] Total 9 bits, the value should be 2~511	0	RW

REG[06h] PCLK PLL Control Register 2 (PPLLC2)

Bit	Description	Default	Access
7-0	PCLK PLLDIVN[7:0]	<u> </u>	RW
	Total 9 bits, the value should be 2~511.	60	R V V

Note: PCLK is used by TFT panel's scan clock and derived from CCLK.

REG[07h] MCLK PLL Control Register 1 (MPLLC1)

Bit	Description	Default	Access
	MCLK output divider Ratio, OD[1:0]		
	00b: Divided by 1.		
7-6	01b: Divided by 2.	0	RW
	10b: Divided by 3.		
	11b: Divided by 4.		
5-1	MCLK Input Divider Ratio, R[4:0]	10	RW
	The value should be 2~31.		
0	MCLK Feedback Divider Ratio of Loop, N[8]	0	
	Total 9 bits, the value should be 2~511.		RW

REG[08h] MCLK PLL Control Register 2 (MPLLC2)

Bit	Description	Default	Access
7-0	MCLK PLLDIVN[7:0]	400	RW
	Total 9 bits, the value should be 2~511.	133	R V V

Note: MCLK is used by internal Display RAM's clock.

REG[09h] CCLK PLL Control Register 1 (CPLLC1)

Bit	Description	Default	Access
	CCLK Output Divider Ratio, OD[1:0]	0	RW
	00b: Divided by 1.		
7-6	01b: Divided by 2.		
	10b: Divided by 3.		
	11b: Divided by 4.		
5-1	CCLK Input Divider Ratio, R[4:0]	10	RW
	The value should be 2~31.		
0	CCLK Feedback Divider Ratio of Loop, N[8]	0	RW
	Total 9 bits, the value should be 2~511.		

REG[0Ah] CCLK PLL Control Register 2 (CPLLC2)

Bit	Description	Default	Access
7-0	CCLK PLLDIVN[7:0]	133	RW
	Total 9 bits, the value should be 2~511.		

Note1: CCLK is used by Core's Clock.

Note2: PLL output frequency is calculated from the following the equation:

FOUT = XI * (N/R)÷ OD

The input frequency XI/R is no less than 1MHz. For example, IN = 10MHz, R[4:0] = 01010, N[8:0] = 100000000, OD[1:0] = 11, then

FOUT = 10MHz * (256 / 10)÷ 4 = 64 MHz

19.4 Interrupt Control Register

REG[0Bh] Interrupt Enable Register (INTEN)

Wakeup/Resume Interrupt Enable0RW70: Disable 1: Enable0RW60: Disable 1: Enable0RW50: Disable 1: Enable0RW50: Disable 1: Enable0RW41: Enable0RW41: Enable0RW30: Disable Interrupt Enable 0: Disable Interrupt 1: Enable Interrupt0RW30: Disable Interrupt Enable 0: Disable Interrupt 1: Enable Interrupt0RW30: Disable Interrupt 1: Enable Interrupt0RW2Serial Flash DMA Complete / Draw Task Finished / BTE Process Complete etc. Interrupt Enable 0: Disable Interrupt0RW1PWM Timer-1 Interrupt Enable 0: Disable Interrupt0RW10: Disable Interrupt 1: Enable Interrupt0RW10: Disable Interrupt 0: Disable Interrupt0RW	Bit	Description	Default	Access
11: Enable0NW60: Disable 1: Enable0RW50: Disable 1: Enable0RW50: Disable 1: Enable0RW41: Enable0RW41: Enable Interrupt Enable 0: Disable Interrupt0RW41: Enable Interrupt Enable 0: Disable Interrupt0RW30: Disable Interrupt Enable 0: Disable Interrupt0RW30: Disable Interrupt Enable 0: Disable Interrupt0RW30: Disable Interrupt Enable 0: Disable Interrupt0RW2Serial Flash DMA Complete / Draw Task Finished / BTE Process Complete etc. Interrupt Enable 0: Disable Interrupt0RW10: Disable Interrupt0RW00: Disable Interrupt0RW10: Disable Interrupt0RW10: Disable Interrupt0RW10: Disable Interrupt0RW10: Disable Interrupt0RW10: Disable Interrupt0RW	7	Wakeup/Resume Interrupt Enable		
External Interrupt Input - PSM[0] Enable)0RW60: Disable 1: Enable0RW512C Master Interrupt Enable 0: Disable 1: Enable0RW50: Disable 1: Enable0RW4VSYNC Time Base Interrupt Enable 0: Disable Interrupt 1: Enable Interrupt0RW4Serial Flash DMA Complete / Draw Task Finished / BTE Process Complete etc. Interrupt Enable 0: Disable Interrupt0RW2Serial Flash DMA Complete / Draw Task Finished / BTE Process Complete etc. Interrupt Enable 0: Disable Interrupt0RW1Enable Interrupt 1: Enable Interrupt0RW1Disable Interrupt 0: Disable Interrupt0RW2Serial Flash DMA Complete / Draw Task Finished / BTE Process Complete etc. Interrupt Enable 0: Disable Interrupt0RW10: Disable Interrupt 1: Enable Interrupt0RW10: Disable Interrupt 0: Disable Interrupt0RW00: Disable Interrupt0RW10: Disable Interrupt0RW00: Disable Interrupt0RW		0: Disable	0	RW
60: Disable 1: Enable0RW5I2C Master Interrupt Enable 0: Disable 1: Enable0RW50: Disable 1: Enable0RW4VSYNC Time Base Interrupt Enable 0: Disable Interrupt This interrupt is to inform MCU that the VSYNC of the LCD has tearing effect.0RW30: Disable Interrupt Enable 0: Disable Interrupt This interrupt is to inform MCU that the VSYNC of the LCD has tearing effect.0RW30: Disable Interrupt 1: Enable Interrupt0RW2Serial Flash DMA Complete / Draw Task Finished / BTE Process Complete etc. Interrupt Enable 0: Disable Interrupt0RW1PWM Timer-1 Interrupt Enable 0: Disable Interrupt 1: Enable Interrupt0RW10: Disable Interrupt 0: Disable Interrupt0RW00: Disable Interrupt 0: Disable Interrupt0RW00: Disable Interrupt 0: Disable Interrupt0RW00: Disable Interrupt0RW00: Disable Interrupt0RW00: Disable Interrupt0RW		1: Enable		
Image: Second		External Interrupt Input - PSM[0] Enable)		
12C Master Interrupt Enable 0: Disable 1: Enable0RW50: Disable 1: Enable0RW41: Enable0RW41: Enable Interrupt 1: Enable Interrupt tearing effect.0RW30: Disable Interrupt Enable 0: Disable Interrupt 1: Enable Interrupt 1: Enable Interrupt0RW30: Disable Interrupt Enable 0: Disable Interrupt 1: Enable Interrupt0RW2Serial Flash DMA Complete / Draw Task Finished / BTE Process Complete etc. Interrupt Enable 0: Disable Interrupt0RW1PWM Timer-1 Interrupt Enable 0: Disable Interrupt 1: Enable Interrupt0RW0O: Disable Interrupt 0: Disable Interrupt0RW0O: Disable Interrupt0RW0O: Disable Interrupt0RW10: Disable Interrupt0RW00: Disable Interrupt0RW00: Disable Interrupt0RW00: Disable Interrupt0RW00: Disable Interrupt0RW00: Disable Interrupt0RW	6	0: Disable	0	RW
50: Disable 1: Enable0RW4VSYNC Time Base Interrupt Enable 0: Disable Interrupt 1: Enable Interrupt This interrupt is to inform MCU that the VSYNC of the LCD has tearing effect.0RW30: Disable Interrupt Enable 0: Disable Interrupt 1: Enable Interrupt0RW30: Disable Interrupt Enable 0: Disable Interrupt 1: Enable Interrupt0RW2Serial Flash DMA Complete / Draw Task Finished / BTE Process Complete etc. Interrupt Enable 0: Disable Interrupt 1: Enable Interrupt0RW1PWM Timer-1 Interrupt Enable 0: Disable Interrupt 1: Enable Interrupt0RW10: Disable Interrupt 0: Disable Interrupt0RW00: Disable Interrupt 0: Disable Interrupt0RW00: Disable Interrupt0RW10: Disable Interrupt 0: Disable Interrupt0RW00: Disable Interrupt0RW00: Disable Interrupt0RW		1: Enable		
Image: Constraint of the constra		I2C Master Interrupt Enable		
VSYNC Time Base Interrupt Enable 0: Disable Interrupt 1: Enable Interrupt This interrupt is to inform MCU that the VSYNC of the LCD has tearing effect.0RW3Keypad-scan Interrupt Enable 0: Disable Interrupt 1: Enable Interrupt0RW3O: Disable Interrupt Enable 0: Disable Interrupt0RW2Serial Flash DMA Complete / Draw Task Finished / BTE Process Complete etc. Interrupt Enable 0: Disable Interrupt0RW1Enable Interrupt 1: Enable Interrupt0RW1O: Disable Interrupt 0: Disable Interrupt0RW1PWM Timer-1 Interrupt Enable 0: Disable Interrupt0RW1O: Disable Interrupt 0: Disable Interrupt0RW0ORW0RW1O: Disable Interrupt 0: Disable Interrupt0RW0ORW0RW1O: Disable Interrupt 0: Disable Interrupt0RW0ORW0RW0ORW0RW0ORW0RW	5	0: Disable	0	RW
40: Disable Interrupt 1: Enable Interrupt0RW41: Enable Interrupt This interrupt is to inform MCU that the VSYNC of the LCD has tearing effect.0RW30: Disable Interrupt Enable 0: Disable Interrupt 1: Enable Interrupt0RW2Serial Flash DMA Complete / Draw Task Finished / BTE Process Complete etc. Interrupt Enable 0: Disable Interrupt0RW1Enable Interrupt 1: Enable Interrupt0RW2O: Disable Interrupt 1: Enable Interrupt0RW1Disable Interrupt 1: Enable Interrupt0RW1O: Disable Interrupt 1: Enable Interrupt0RW1O: Disable Interrupt 0: Disable Interrupt0RW0Disable Interrupt 1: Enable Interrupt0RW0Disable Interrupt 0: Disable Interrupt0RW0Disable Interrupt0RW0Disable Interrupt0RW0Disable Interrupt0RW		1: Enable		
41: Enable Interrupt This interrupt is to inform MCU that the VSYNC of the LCD has tearing effect.0RW3Keypad-scan Interrupt Enable 0: Disable Interrupt0RW30: Disable Interrupt0RW1: Enable Interrupt0RW2Serial Flash DMA Complete / Draw Task Finished / BTE Process Complete etc. Interrupt Enable 0: Disable Interrupt0RW1Enable Interrupt0RW1: Enable Interrupt0RW1: Enable Interrupt0RW1: Enable Interrupt0RW1: Enable Interrupt0RW0: Disable Interrupt0RW1: Enable Interrupt0RW0: Disable Interrupt0RW0: Disable Interrupt0RW0: Disable Interrupt0RW0: Disable Interrupt0RW0: Disable Interrupt0RW0: Disable Interrupt0RW		VSYNC Time Base Interrupt Enable		
1 Enable interrupt 1		0: Disable Interrupt		
tearing effect.Keypad-scan Interrupt Enable30: Disable Interrupt0RW1: Enable Interrupt0RW2Serial Flash DMA Complete / Draw Task Finished / BTE Process Complete etc. Interrupt Enable 0: Disable Interrupt0RW2O: Disable Interrupt0RW1: Enable Interrupt0RW1: Enable Interrupt0RW1: Enable Interrupt0RW1: Enable Interrupt0RW0: Disable Interrupt0RW1: Enable Interrupt0RW0: Disable Interrupt0RW0: Disable Interrupt0RW0: Disable Interrupt0RW	4	1: Enable Interrupt	0	RW
30: Disable Interrupt0RW1: Enable Interrupt0RW2Serial Flash DMA Complete / Draw Task Finished / BTE Process Complete etc. Interrupt Enable 0: Disable Interrupt 1: Enable Interrupt0RW1O: Disable Interrupt 0: Disable Interrupt0RW1O: Disable Interrupt 0: Disable Interrupt 1: Enable Interrupt0RW10: Disable Interrupt 0: Disable Interrupt0RW10: Disable Interrupt 0: Disable Interrupt0RW00: Disable Interrupt0RW00: Disable Interrupt0RW				
1: Enable Interrupt 1: Enable Interrupt 2 Serial Flash DMA Complete / Draw Task Finished / BTE Process Complete etc. Interrupt Enable 0 0: Disable Interrupt 0 RW 1: Enable Interrupt 0 RW 1 PWM Timer-1 Interrupt Enable 0 RW 1 0: Disable Interrupt 0 RW 1 0: Disable Interrupt 0 RW 1 0: Disable Interrupt 0 RW 0 0: Disable Interrupt 0 RW 0 0: Disable Interrupt 0 RW		Keypad-scan Interrupt Enable		
2 Serial Flash DMA Complete / Draw Task Finished / BTE Process Complete etc. Interrupt Enable 0: Disable Interrupt 0 RW 2 0: Disable Interrupt 1: Enable Interrupt 0 RW 1 PWM Timer-1 Interrupt Enable 0: Disable Interrupt 1: Enable Interrupt 0 RW 1 0: Disable Interrupt 0: Disable Interrupt 0 RW 0 O RW 0 RW	3	0: Disable Interrupt	0	RW
2Process Complete etc. Interrupt Enable 0: Disable Interrupt 1: Enable Interrupt0RW1Enable Interrupt0RW1O: Disable Interrupt Enable 0: Disable Interrupt0RW1O: Disable Interrupt0RW0O: Disable Interrupt0RW0O: Disable Interrupt0RW		1: Enable Interrupt		
0. Disable Interrupt 1: Enable Interrupt 1 0: Disable Interrupt 1 0: Disable Interrupt 0 0 0: Disable Interrupt 0 0 0: Disable Interrupt 0 0				
PWM Timer-1 Interrupt Enable 0 RW 1 0: Disable Interrupt 0 RW 1: Enable Interrupt 0 RW 0 0: Disable Interrupt Enable 0 RW	2	0: Disable Interrupt	0	RW
10: Disable Interrupt 1: Enable Interrupt0RW0PWM Timer-0 Interrupt Enable 00RW00: Disable Interrupt0RW		1: Enable Interrupt		
1: Enable Interrupt 1: Enable Interrupt 0 0: Disable Interrupt 0 0: Disable Interrupt	1	PWM Timer-1 Interrupt Enable		
PWM Timer-0 Interrupt Enable 0 RW 0 0: Disable Interrupt 0 RW		0: Disable Interrupt	0	RW
0 0: Disable Interrupt 0 RW		1: Enable Interrupt		
	0	PWM Timer-0 Interrupt Enable		
1: Enable Interrupt		0: Disable Interrupt	0	RW
		1: Enable Interrupt		

REG[0Ch] Interrupt Event Flag Register (INTF)

Bit	Description	Default	Access
7	Wakeup/Resume Interrupt Flag Write: Clear Interrupt Flag		
	0: No Operation		
	1: Clear Wakeup/Resume Interrupt Flag	0	RW
	Read: Read Interrupt Flag	_	
	0: No Wakeup/Resume Interrupt Happens		
	1: Wakeup/Resume Interrupt Happens		
	External Interrupt Input - PSM[0] Flag Write: Clear PSM[0] Pin Interrupt Flag		
	0: No Operation		
6	1: Clear PSM[0] Interrupt Flag	0	RW
_	Read: Read PSM[0] Pin Interrupt Flag		
	0: No PSM[0] Interrupt Happens		
	1: PSM[0] Interrupt Happens		
	I2C Master Interrupt Flag Write: Clear I2C Master Interrupt Flag		
	0: No Operation		
5	1: Clear I2C Master Interrupt Flag	0	RW
_	Read: Read I2C Master Interrupt Flag		
	0: No I2C Master Interrupt Happens		
	1: I2C Master Interrupt Happens		
	VSYNC Time Base Interrupt Flag Write: Clear VSYNC Interrupt Flag		
	0: No Operation		
4	1: Clear VSYNC Interrupt Flag	0	RW
	Read: Read VSYNC Interrupt Flag 0: No VSYNC Interrupt Happens 1: VSYNC Interrupt Happens		
3	Keypad-scan Interrupt Flag Write: Clear Keypad-scan Interrupt Flag		
	0: No Operation		
	1: Clear Keypad-scan Interrupt Flag	0	RW
	Read: Read Keypad-scan Interrupt Flag	_	
	0: No Keypad-scan Interrupt Happens		
	1: Keypad-scan Interrupt Happens		

Bit	Description	Default	Access
2	Serial Flash DMA Complete Draw Task Finished BTE Process Complete etc. Interrupt Flag Write: Clear Process Complete Interrupt Flag 0: No Operation 1: Clear Interrupt Flag Read: Read Process Complete Interrupt Flag 0: No Interrupt Happens 1: Interrupt Happens	0	RW
1	 PWM1 Timer Interrupt Flag Write: Clear PWM1 Interrupt Flag 0: No Operation 1: Clear PWM1 Interrupt Flag Read: Read PWM1 Interrupt Flag 0: No PWM1 Interrupt Happens 1: PWM1 Interrupt Happens 	0	RW
0	 PPWM0 Timer Interrupt Flag Write: Clear PWM0 Interrupt Flag 0: No Operation 1: Clear PWM0 Interrupt Flag Read: Read PWM0 Interrupt Flag 0: No PWM0 Interrupt Happens 1: PWM0 Interrupt Happens 	0	RW

Note: If the Host receives interruption, but the flag of this register shows no interruption happened, then Host should confirm SPI Master State Register Interrupt Flag of REG[BAh].

REG[0Dh] Mask Interrupt Flag Register (MINTFR)

Bit	Description	Default	Access
	Mask Wakeup/Resume Interrupt Flag		
7	0: Unmask	0	RW
	1: Mask		
	External Interrupt Input - PSM[0] Flag		
6	0: Unmask	0	RW
	1: Mask		
	I2C Master Interrupt Flag		
5	0: Unmask	0	RW
	1: Mask		
	VSYNC Time Base Interrupt Flag		
4	0: Unmask	0	RW
	1: Mask		
3	Keypad-scan Interrupt Flag		
	0: Unmask	0	RW
	1: Mask		

Bit	Description	Default	Access
2	Serial Flash DMA Complete Draw Task Finished BTE Process Complete etc. Interrupt Flag 0: Unmask 1: Mask	0	RW
1	PWM1 Timer Interrupt Flag 0: Unmask 1: Mask	0	RW
0	PWM0 Timer Interrupt Flag 0: Unmask 1: Mask	0	RW

Note: If the Host masks the interrupt flag, then LT768x will not send interruption to the Host. If only some unmasked interrupt flags are used, Host can check interrupt flag to find out whether there is an interrupt.

REG[0Eh] Pull-High Control Register (PUENR)

Bit	Description	Default	Access
7-6	NA.	NA	NA
	GPIO-F[7:0] Pull-High Enable		
5	0: without Pull-up Resistor	0	RW
	1: with Pull-up		
	GPIO-E[7:0] Pull-High Enable		
4	0: without Pull-up Resistor	0	RW
	1: with Pull-up		
	GPIO-D[7:0] Pull-High Enable		
3	0: without Pull-up Resistor	0	RW
	1: with Pull-up		
	GPIO-C[4:0] Pull-High Enable		
2	0: without Pull-up Resistor	0	RW
	1: with Pull-up		
	DB[15:8] Pull- High Enable		
1	0: without Pull-up Resistor	0	RW
	1: with Pull-up		
	DB[7:0] Pull- High Enable		
0	0: without Pull-up Resistor	0	RW
	1: with Pull-up		

Note: These bits are available only when GPIO function is enabled.

Bit	Description	Default	Access
	PD[18] – Function Select		
7	0: GPIO-D7	0	RW
	1: KO[4]		
	PD[17] – Function Select		
6	0: GPIO-D5	0	RW
	1: KO[2]		
	PD[16] – Function Select		
5	0: GPIO-D4	0	RW
	1: KO[1]		
	PD[9] – Function Select		
4	0: GPIO-D3	0	RW
	1: KO[3]		
	PD[8] – Function Select		
3	0: GPIO-D2	0	RW
	1: KI[3]		
	PD[2] – Function Select		
2	0: GPIO-D6	0	RW
	1: KI[4]		
	PD[1] – Function Select		
1	0: GPIO-D1	0	RW
	1: KI[2]		
	PD[0] – Function Select		
0	0: GPIO-D0	0	RW
	1: KI[1]		

REG[0Fh] PD for GPIO/Key Function Select Register (PSFSR)

Some of the LCD Data pins are shared with GPIO and Keypad-scan pins. If LCD I/F is not 24bpp mode, then PD[18:16 / 8:9 /2:0] can be defined as GPIO or Keypad-scan pins.

19.5 LCD Display Control Registers

REG[10h] Main/PIP Window Control Register (MPWCTR)

Bit	Description	Default	Access
7	PIP-1 Window Enable/Disable 0: PIP-1 Window Disable 1: PIP-1 Window Enable PIP-1 window always on top of PIP-2 window.	0	RW
6	PIP-2 Window Enable/Disable 0: PIP-2 Window Disable 1: PIP-2 Window Enable PIP-1 window always on top of PIP-2 window	0	RW
5	NA	NA	NA
4	 Select Configure PIP 1 or 2 Window's parameters PIP window's parameter including Color Depth, Starting Address, Image Width, Display Coordinates, Window Coordinates, Window Width and Window Height. 0: To configure PIP 1's parameters. 1: To configure PIP 2's parameters. 	0	RW
3-2	Main Image Color Depth Setting 00b: 8bpp Generic TFT (256 color) 01b: 16bpp Generic TFT (65K color) 1xb: 24bpp Generic TFT (16.7M color)	1	RW
1	NA	0	RW
0	 To Control Panel's Synchronous Signals 0: Sync Mode → Enable VSYNC, HSYNC, DE 1: DE Mode → Only DE enable, VSYNC & HSYNC in idle state. 	0	RW

REG[11h] PIP Window Color Depth Setting (PIPCDEP)

Bit	Description	Default	Access
7-4	NA	0	RO
3-2	PIP-1 Window Color Depth Setting 00b: 8bpp Generic TFT (256 color) 01b: 16bpp Generic TFT (65K color) 1xb: 24bpp Generic TFT (16.7M color)	1	RW
1-0	PIP-2 Window Color Depth Setting 00b: 8bpp Generic TFT (256 color) 01b: 16bpp Generic TFT (65K color) 1xb: 24bpp Generic TFT (16.7M color)	1	RW

LT768x_DS_ENG / V4.2

REG[12h] Display Configuration Register (DPCR)

Bit	Description	Default	Access
7	PCLK Inversion 0: TFT Panel fetches PD at PCLK rising edge. PCLK PD 1: TFT Panel fetches PD at PCLK falling edge. PCLK PD PCLK	0	RW
6	Display ON/OFF Ob: Display Off 1b: Display On	0	RW
5	Display Test Color Bar Ob: Disable 1b: Enable	0	RW
4	This bit must be 0.	0	RW
3	VDIR: Vertical Scan Direction 0: From Top to Bottom 1: From bottom to Top	0	RW
2-0	Parallel PD[23:0] Output Sequence 000b: RGB 001b: RBG 010b: GRB 011b: GBR 100b: BRG 101b: BGR 110b: Gray 111b: Send out Idle State. All data are 0 (Black) or 1(White). This option has to setup with REG[13h].	0	RW

Note: When VDIR = 1, PIP window, Graphic Cursor and Text Cursor function will be disabled automatically.

Bit	Description	Default	Access
7	HSYNC Polarity 0: Low Active 1: High Active	0	RW
6	VSYNC Polarity 0: Low Active 1: High Active	0	RW
5	PDE Polarity 0: High Active 1: Low Active	0	RW
4	 PDE Idle State 0: Pin "PDE" output Low 1: Pin "PDE" output High This is used to setup the PDE output status in Power Saving mode or Display Off. 	0	RW
3	PCLK Idle State 0: Pin "PCLK" output Low 1: Pin "PCLK" output High This is used to setup the PCLK output status in Power Saving mode or Display Off.	0	RW
2	PD Idle State 0: Pins "PD[23:0]" output Low 1: Pins "PD[23:0]" output High This is used to setup the PD output status in Vertical/Horizontal Non-Display Period, Power Saving mode or Display Off.	0	RW
1	HSYNC Idle State 0: Pin "HSYNC" output Low 1: Pin "HSYNC" output High This is used to setup the HSYNC output status in Power Saving mode or Display Off.	1	RW
0	VSYNC Idle State 0: Pin "VSYNC" output Low 1: Pin "VSYNC" output High This is used to setup the VSYNC output status in Power Saving mode or Display Off.	1	RW

REG[13h] Panel Scan Clock and Data Setting Register (PCSR)

Note: The sum of (HST + HPW + HND) had better be larger than 64Pixels to prevent scanning FIFO empty. If both PIP1 and PIP2 are enabled and are very close to the left side of the window, there is only a small change in PIP1 and PIP2's UL-X. Please refer to Figure 9-1 TFT-LCD interface Timing diagram.

REG[14h] Horizontal Display Width Register (HDWR)

Bit	Description	Default	Access
7-0	 Horizontal Display Width Setting This register is used to set a horizontal display width. The specified LCD screen resolution is 8 pixels in one unit resolution. Horizontal Display Width (pixels) = (HDWR + 1)* 8 + HDWFTR HDWFTR (REG[15h]) is the fine-tuning value for Horizontal Display Width. Each fine-tuning resolution is 1 pixel, and the maximum horizontal width is 2,048 pixels. 	4Fh	RW

REG[15h] Horizontal Display Width Fine Tune Register (HDWFTR)

Bit	Description	Default	Access
7-4	NA	NA	NA
3-0	Horizontal Display Width Fine Tuning This Register is the fine-tuning value for Horizontal Display Width, and each fine-tuning resolution is 1 pixel.	0	RW

REG[16h] Horizontal Non-Display Period Register (HNDR)

Bit	Description	Default	Access
7-5	NA	0	RO
4-0	Horizontal Non-Display Period This register assigns the Period of Horizontal Non-Display. It is also called "Back Porch". Horizontal Non-Display Period (Pixels) = (HNDR + 1)* 8 + HNDFTR HNDFTR (REG[17h]) is the fine-tuning value for Horizontal Non-display Period. Each fine-tuning resolution is 1 pixel, and the maximum horizontal width is 2,048 pixels.	03h	RW

REG[17h] Horizontal Non-Display Period Fine Tune Register (HNDFTR)

Bit	Description	Default	Access
7-4	NA	0	RO
3-0	Horizontal Non-Display Period Fine Tuning This Register is the fine-tuning value for Horizontal Non-display Period, and each fine-tuning resolution is 1 pixel. it is used to support the SYNC mode panel.	06h	RW

REG[18h] HSYNC Start Position Register (HSTR)

Bit	Description	Default	Access
7-5	NA	0	RO
4-0	HSYNC Start Position This register specifies the starting address of the HSYNC. The starting point for the calculation is the point at which the end of the display area is to start producing HSYNC. The basic unit of each adjustment is 8 pixels. It's also called "Front Porch". HSYNC Start Position = (HSTR + 1)* 8	1Fh	RW

REG[19h] HSYNC Pulse Width Register (HPWR)

Bit	Description	Default	Access
7-5	NA	NA	NA
4-0	HSYNC Pulse Width HSYNC Pulse Width (Pixels)= (HPW + 1)* 8	0	RW

REG[1Ah-1Bh] Vertical Display Height Register (VDHR)

Bit	Description	Default	Access
7-0	Vertical Display Height REG[1Ah] mapping to VDHR [7:0] REG[1Bh] bit[2:0] mapping to VDHR [10:8], bit[7:3] are not used. The height of the vertical display is in the unit of line, and the formula is as following: Vertical Display Height (Line)= VDHR + 1	DFh	RW

REG[1Ch-1Dh] Vertical Non-Display Period Register (VNDR)

Bit	Description	Default	Access
7-0	Vertical Non-Display Period REG[1Ch] mapping to VNDR [7:0] REG[1Dh] bit[1:0] mapping to VNDR [9:8], REG[1Dh] bit[7:2] are not used. The formula is as following: Vertical Non-Display Period (Line)= (VNDR + 1)	15h	RW

REG[1Eh] VSYNC Start Position Register (VSTR)

Bit	Description	Default	Access
7-0	VSYNC Start Position The starting position is from the end of display area to the beginning of VSYNC. VSYNC Start Position (Line)= (VSTR + 1)	0Bh	RW

REG[1Fh] VSYNC Pulse Width Register (VPWR)

Bit	Description	Default	Access
7-6	NA	0	RO
5-0	VSYNC Pulse Width VSYNC Pulse Width (Line)= (VPWR + 1)	0	RW

REG[23h-20h] Main Image Start Address (MISA)

Bit	Description	Default	Access
7-0	Main Image Start Address REG[20h] mapping to MISA[7:0], bit[1:0] must be 0. REG[21h] mapping to MISA[15:8] REG[22h] mapping to MISA[23:16] REG[23h] mapping to MISA[31:24]	0	RW

REG[25h-24h] Main Image Width (MIW)

Bit	Description	Default	Access
7-0	 Main Image Width REG[24h] mapping to MIW[7:0], bit[1:0] must be 0. REG[25h] bit[4:0] mapping to MIW[12:8], bit[7:5] are not used The unit is pixel, which is the pixel that represents the horizontal width of the actual LCD. The maximum setting is 8,192 pixels.	0	RW

REG[27h-26h] Main Window Upper-Left Corner X-Coordinates (MWULX)

Bit	Description	Default	Access
7-0	 Main Window Upper-Left Corner X-Coordinates REG[26h] mapping to MWULX[7:0], bit[1:0] must be 0. REG[27h] bit[4:0] mapping to MWULX [12:8], bit[7:5] are not used. The unit is pixel. The sum of X-Coordinates plus Horizontal Display Width cannot be greater than 8,191. 	0	RW

REG[29h-28h] Main Window Upper-Left corner Y-Coordinates (MWULY)

Bit	Description	Default	Access
7-0	Main Window Upper-Left Corner Y-Coordinates REG[28h] mapping to MWULY[7:0] REG[29h] bit[4:0] mapping to MWULY [12:8], bit[7:5] are not used. Unit: Pixel. The range is between 0 and 8,191.	0	RW

REG[2Bh-2Ah] PIP Window 1 or 2 Display Upper-Left Corner X-Coordinates (PWDULX)

Bit	Description	Default	Access
7-0	 PIP Window Display Upper-Left Corner X-Coordinates REG[2Ah] mapping to PWDULX[7:0], bit[1:0] must be 0. REG[2Bh] bit[4:0] mapping to PWDULX[12:8], bit[7:5] are not used. Unit: Pixel. X-axis coordinates should be less than the horizontal display width. This setting is relative to the PIP settings in the register of REG[10h].	0	RW

REG[2Dh-2Ch] PIP Window 1 or 2 Display Upper-Left corner Y-Coordinates (PWDULY)

Bit	Description	Default	Access
7-0	 PIP Window Display Upper-Left Corner Y-Coordinates REG[2Ch] mapping to PWDULX[7:0] REG[2Dh] bit[4:0] mapping to PWDULX[12:8], bit[7:5] are not used. Y-axis coordinates should be less than the vertical display height. This setting is relative to the PIP settings in the register of REG[10h]. 	0	RW

REG[31h-2Eh] PIP Image 1 or 2 Start Address (PISA)

Bit	Description	Default	Access
7-0	PIP Image Start Address REG[2Eh] mapping to PISA[7:0], bit[1:0] must be 0. REG[2Fh] mapping to PISA [15:8] REG[30h] mapping to PISA [23:16] REG[31h] mapping to PISA [31:24] This setting is relative to the PIP settings in the register of REG[10h].	0	RW

REG[33h-32h] PIP Image 1 or 2 Width (PIW)

Bit	Description	Default	Access
7-0	 PIP Image Width REG[32h] mapping to PIW[7:0], bit[1:0] must be 0. REG[33h] bit[5:0] mapping to PIW[13:8], bit[7:6] are not used. Unit: Pixel. The value is physical width, and maximum value is 8192 pixels. This width should be less than horizontal display width. This setting is relative to the PIP settings in the register of REG[10h]. 	0	RW

REG[35h-34h] PIP Window Image 1 or 2 Upper-Left Corner X-Coordinates (PWIULX)

Bit	Description	Default	Access
7-0	 PIP Window 1 or 2 Image Upper-Left Corner X-Coordinates REG[34h] mapping to PWIULX[7:0], bit[1:0] must be 0. REG[35h] bit[4:0] mapping to PWIULX[12:8], bit[7:5] are not used. Unit: Pixel. The sum of X-axis coordinates and PIP image width must be less than or equal to 8,191. This setting is relative to the PIP settings in the register of REG[10h]. 	0	RW

REG[37h-36h] PIP Window Image 1 or 2 Upper-Left Corner Y-Coordinates (PWIULY)

Bit	Description	Default	Access
7-0	 PIP Windows Display Upper-Left Corner Y-Coordinates REG[36h] mapping to PWIULY[7:0], bit[1:0] must be 0. REG[37h] bit[4:0] mapping to PWIULY[12:8], bit[7:5] are not used. Unit: Pixel. The sum of Y-axis coordinates and PIP window height should be less than or equal to 8,191. This setting is relative to the PIP settings in the register of REG[10h]. 	0	RW

REG[39h-38h] PIP Window 1 or 2 Width (PWW)

Bit	Description	Default	Access
7-0	 PIP Window Width REG[38h] mapping to PWW[7:0], bit[1:0] must be 0. REG[39h] bit[5:0] mapping to PWW[13:8], bit[7:6] are not used. Unit: Pixel. Maximum value is 8,192 pixels. This setting is relative to the PIP settings in the register of REG[10h]. 	0	RW

REG[3Bh-3Ah] PIP Window 1 or 2 Height (PWH)

Bit	Description	Default	Access
7-0	 PIP Window Height REG[3Ah] mapping to PWH[7:0], bit[1:0] must be 0. REG[3Bh] bit[5:0] mapping to PWH[13:8], bit[7:6] are not used. Unit: Pixel. The value is physical pixel number and maximum value is 8,192 pixels. This setting is relative to the PIP settings in the register of REG[10h]. 	0	RW

Note 1: The resolution of Window Size and Starting Position in the horizontal direction is 8 pixels, the vertical resolution is 1 line.

Note 2: The above registers REG[20h] ~ REG[3Bh] need to be written from LSB to MSB in turn. Suppose we need to set the Main Image Start Address, this relative register are REG[20h] to REG[23h]. Then Host must write Address data from LSB (REG[20h]) to MSB (REG[23h]) in turn. When REG[23h] is written, LT768x will then write the complete Main Image Start Address to the internal register.

REG[3Ch] Graphic / Text Cursor Control Register (GTCCR)

Bit	Description	Default	Access
7	Gamma Correction Enable 0: Disable 1: Enable Gamma correction is the last output stage.	0	RW
6-5	Gamma Table Select for Host Write Gamma Data 00b: Gamma table for Blue 01b: Gamma table for Green 10b: Gamma table for Red 11b: NA	0	RW
4	Graphic Cursor Enable 0: Graphic Cursor Disable 1: Graphic Cursor Enable Graphic cursor will auto disable if VDIR (REG[12h] bit3) set as "1".	0	RW
3-2	Graphic Cursor Selection Select one from four graphic cursor types. (00b to 11b) 00b: Graphic Cursor Set 1 01b: Graphic Cursor Set 2 10b: Graphic Cursor Set 3 11b: Graphic Cursor Set 4	0	RW

Bit	Description	Default	Access
1	Text Cursor Enable 0: Disable 1: Enable Note: Text cursor & Graphic cursor cannot be enabled simultaneously. Graphic cursor has higher priority than Text cursor if enabled simultaneously.	0	RW
0	Text Cursor Blinking Enable 0: Disable 1: Enable	0	RW

REG[3Dh] Blink Time Control Register (BTCR)

Bit	Description	Default	Access
7-0	Text Cursor Blink Time Setting 00h: 1 Frame Cycle Time 01h: 2 Frames Cycle Time 02h: 3 Frames Cycle Time : FFh: 256 frames Cycle Time	0	RW

REG[3Eh] Text Cursor Horizontal Size Register (CURHS)

Bit	Description	Default	Access
7-5	NA	0	RO
	Text Cursor Horizontal Size Setting		
	00000b: 1 Pixel		
	00001b: 2 Pixels		
4-0	:	07h	RW
	:		
	11111b: 32 Pixels		
	Note: When the character is enlarged, the cursor will be enlarged at the same time.		

REG[3Fh] Text Cursor Vertical Size Register (CURVS)

Bit	Description	Default	Access
7-5	NA	0	RO
4-0	Text Cursor Vertical Size Setting Unit: Pixel, Zero-based number. Value "0" means 1 pixel. Note: When the character is enlarged, the cursor will be enlarged at the same time.	0	RW

LT768x_DS_ENG / V4.2

REG[40h-41h] Graphic Cursor Horizontal Position Register (GCHP)

Bit	Description	Default	Access
7-0	Graphic Cursor Horizontal Position REG[40h] mapping to GCHP[7:0] REG[41h] bit[4:0] mapping to GCHP[12:8], bit[7:5] are not used.	0	RW

REG[42h-43h] Graphic Cursor Vertical Position Register (GCVP)

Bit	Description	Default	Access
	Graphic Cursor Vertical Position		
7-0	REG[42h] mapping to GCVP[7:0] REG[43h] bit[4:0] mapping to GCVP[12:8], bit[7:5] are not used.	0	RW

REG[44h] Graphic Cursor Color 0 (GCC0)

Bit	Description	Default	Access
7-0	Graphic Cursor Color 0 with 256 Colors		DW
	RGB Format [7:0] = RRRGGGBB	0	RW

REG[45h] Graphic Cursor Color 1 (GCC1)

Bit	Description	Default	Access
7-0	Graphic Cursor Color 1 with 256 Colors	0	RW
	RGB Format [7:0] = RRRGGGBB		

19.6 Geometric Engine Control Registers

REG[53h-50h] Canvas Start Address (CVSSA)

Bit	Description	Default	Access
7-0	Start Address of Canvas REG[50h] mapping to CVSSA[7:0], bit[1:0] must be 0. REG[51h] mapping to CVSSA[15:8] REG[52h] mapping to CVSSA[23:16] REG[53h] mapping to CVSSA[31:24] These Registers will be ignored if canvas is in linear Addressing mode.	0	RW

REG[55h-54h] Canvas Image Width (CVS_IMWTH)

Bit	Description	Default	Access
7-0	Canvas Image Width REG[54h] mapping to CVS_IMWTH[7:0], bit[1:0] must be 0. REG[55h] bit[5:0] mapping to CVS_IMWTH[13:8], bit[7:6] are not used. Width = Real Image Width These Registers will be ignored if canvas is in linear Addressing mode.	0	RW

Note: The unit of REG[54h] ~ REG[5Dh] is Pixel.

REG[57h-56h] Active Window Upper-Left Corner X-Coordinates (AWUL_X)

Bit	Description	Default	Access
7-0	 Active Window Upper-Left Corner X-Coordinates REG[56h] mapping to AWUL_X[7:0] REG[57h] bit[4:0] mapping to AWUL_X[12:8], bit[7:5] are not used. Unit: Pixel. The sum of X-axis coordinates and Active Window width cannot be larger than 8,191. These Registers will be ignored if canvas is in linear Addressing mode. 	0	RW

REG[59h-58h] Active Window Upper-Left Corner Y-Coordinates (AWUL_Y)

Bit	Description	Default	Access
7-0	 Active Window Upper-Left Corner Y-Coordinates REG[58h] mapping to AWUL_Y[7:0] REG[59h] bit[4:0] mapping to AWUL_Y[12:8], bit[7:5] are not used. Unit: Pixel. The sum of Y-axis coordinates and Active Window height cannot be larger than 8,191. These Registers will be ignored if canvas is in linear Addressing mode. 	0	RW

REG[5Bh-5Ah] Active Window Width (AW_WTH)

Bit	Description	Default	Access
7-0	 Active Window Width [13:8] REG[5Ah] mapping to AW_WTH[7:0] REG[5Bh] bit[5:0] mapping to AW_WTH[13:8], bit[7:6] are not used. Unit: Pixel. The value is physical pixel width. Maximum pixel width is 8,192. These Registers will be ignored if canvas is in linear Addressing mode. 	0	RW

REG[5Dh-5Ch] Active Window Height (AW_HT)

Bit	Description	Default	Access
7-0	 Height of Active Window [13:8] REG[5Ch] mapping to AW_HT[7:0] REG[5Dh] bit[5:0] mapping to AW_HT[13:8], bit[7:6] are not used. Unit: Pixel. The value is physical pixel width. Maximum pixel width is 8,192. These Registers will be ignored if canvas is in linear Addressing mode. 	0	RW

Bit	Description	Default	Access
7-4	NA	0	RO
3	Select What will Read Back from Graphic Read/Write Position Register 0: Read back Graphic Write position 1: Read back Graphic Read position (Pre-fetch Address)	0	RW
2	Canvas Addressing Mode 0: Block mode (X-Y coordinates addressing) 1: Linear mode	0	RW
1-0	Canvas Image's Color Depth & Memory R/W Data Width In Block Mode: 00b: 8bpp 01b: 16bpp 1xb: 24bpp Note: Monochrome data can be input under any one color depth and the proper image width. In Linear Mode: X0: 8-bits memory data read/write. X1: 16-bits memory data read/write	0	RW

REG[5Eh] Color Depth of Canvas & Active Window (AW_COLOR)

Note: Please refer to Figure 10-2 Canvas Window and Active Window.

REG[60h-5Fh] Graphic Read/Write X-Coordinate Register (CURH)

Bit	Description	Default	Access
	Write: Set Graphic Read/Write X-Coordinate position Read: Read Graphic Read/Write X-Coordinate position		
	To decide whether it is "Read position" or "Write position", it depends on the setting of REG[5Eh] bit3.		
	REG[5Fh] mapping to CURH[7:0]		
7-0	REG[60h] bit[4:0] mapping to CURH[12:8], bit[7:5] are not used.	0	RW
	When DPRAM in Linear mode: Memory Read/Write address [15:0], Unit: Byte.		
	When DPRAM in Block mode: Graphic Read/Write X-Coordinate [12:0], Unit: Pixel.		

Note: Host should program proper active window related parameters before configuring this register.

REG[62h-61h] Graphic Read/Write Y-Coordinate Register (CURV)

		Access
 Write: Set Graphic Read/Write X-Coordinate position Read: Read Graphic Read/Write X-Coordinate position To decide whether it is "Read position" or "Write position", it depends on the setting of REG[5Eh] bits. REG[61h] mapping to CURV[7:0] REG[62h] bit[4:0] mapping to CURV[12:8], bit[7:5] are not used. When DPRAM In Linear Mode: Memory Read/Write address [31:16], Unit: Byte. When DPRAM In Block Mode: Graphic Read/Write Y-Coordinate [12:0], Unit: Pixel. 	0	RW

Note: Host should program proper active window related parameters before configuring this register.

REG[64h-63h] Text Write X-Coordinates Register (F_CURX)

Bit	Description	Default	Access
7-0	Text Write X-coordinates F_CURX[12:0] REG[63h] mapping to F_CURX[7:0] REG[64h] bit[4:0] mapping to F_CURX[12:8], bit[7:5] are not used. Write: Set Text Write X-Coordinates position Read: Current Text Write X-Coordinates position	0	RW

REG[66h-65h] Text Write Y-Coordinates Register (F_CURY)

Bit	Description	Default	Access
7-0	Text Write Y-coordinates F_CURY[12:0] REG[65h] mapping to F_CURY[7:0] REG[66h] bit[4:0] mapping to F_CUR[12:8], bit[7:5] are not used. Write: Set Text Write Y-Coordinates position Read: Current Text Write Y-Coordinates position	0	RW

Bit	Draw Line/Triangle Control Register 0 (DCR0) Description	Default	Access
7	Draw Line / Triangle Start Control Write: 0: Stop the drawing function. 1: Start the drawing function. Read: 0: Drawing function complete. 1: Drawing function is processing.	0	RW
6	NA	0	RO
5	Fill Function for Triangle 0: Non Fill 1: Fill	0	RW
4-1	Draw Triangle or Line Select 0000b: Draw Line 0001b: Draw Triangle 0010b: Rectangle 0011b: Quadrilateral 0100b: Pentagon 0101b: Polyline (3EP) 0110b: Polyline (4EP) 0111b: Polyline (5EP) 1000b: Ellipse 1001b: Rounded-Rectangle 1010b, 1011b: NA 1100b: Oval Arc on upper-right /1st Quadrant 1101b: Oval Arc on upper-left / 2nd Quadrant 1110b: Oval Arc on Lower-Left / 3rd Quadrant 1111b: Oval Arc on Lower-Right / 4th Quadrant	0	RW
0	Polyline Style 0: Open-end Polyline, 1: Closed Polyline (connect the last point to the start point)	0	RO

REG[67h] Draw Line/Triangle Control Register 0 (DCR0)

REG[69h-68h] Draw Line/Rectangle/Triangle Point 1 X-Coordinates Register (DLHSR)

Bit	Description	Default	Access
	Draw Line/Rectangle/Triangle Point 1 X-coordinates DLHSR[12:0]		
7-0	REG[68h] mapping to DLHSR[7:0] REG[69h] bit[4:0] mapping to DLHSR[12:8], bit[7:5] are not used.	0	RW
	Unit: Pixel. When drawing a rectangle, start point & end point cannot be located at the same point or at the same X- Coordinates or Y- Coordinates.		

REG[6Bh-6Ah] Draw Line/Rectangle/Triangle Point 1 Y-Coordinates Register (DLVSR)

Bit	Description	Default	Access
	Draw Line/Rectangle/Triangle Point 1 Y-coordinates DLVSR[12:0]		
7-0	REG[6Ah] mapping to DLVSR[7:0] REG[6Bh] bit[4:0] mapping to DLVSR[12:8], bit[7:5] are not used.	0	RW

REG[6Dh-6Ch] Draw Line/Rectangle/Triangle Point 2 X-Coordinates Register (DLHER)

Bit	Description	Default	Access
	Draw Line/Rectangle/Triangle Point 2 X-coordinates DLHER[12:0]		
7-0	REG[6Ch] mapping to DLHER[7:0] REG[6Dh] bit[4:0] mapping to DLHER[12:8], bit[7:5] are not used.	0	RW

REG[6Fh-6Eh] Draw Line/Rectangle/Triangle Point 2 Y-Coordinates Register (DLVER)

Bit	Description	Default	Access
	Draw Line/Rectangle/Triangle Point 2 Y-coordinates DLVER[12:0]		
7-0	REG[6Eh] mapping to DLVER[7:0] REG[6Fh] bit[4:0] mapping to DLVER[12:8], bit[7:5] are not used.	0	RW

REG[71h-70h] Draw Triangle Point 3 X-Coordinates Register (DTPH)

Bit	Description	Default	Access
	Draw Line/Rectangle/Triangle Point 3 X-coordinates DTPH[12:0]		
7-0	REG[70h] mapping to DTPH[7:0] REG[71h] bit[4:0] mapping to DTPH[12:8], bit[7:5] are not used.	0	RW

REG[73h-72h] Draw Triangle Point 3 Y-Coordinates Register (DTPV)

Bit	Description	Default	Access
7-0	Draw Triangle Point 3 Y-coordinates DTPV[12:0] REG[72h] mapping to DTPV[7:0] REG[73h] bit[4:0] mapping to DTPV[12:8], bit[7:5] are not used.	0	RW

Note: When Drawing a triangle: If any two endpoints are overlapped, it will draw a line. If three endpoints are overlapped, it will draw a dot.

Bit	Description	Default	Access
7	Draw Circle / Ellipse / Square /Rounded-rectangle Control Write: 0: Stop the drawing function. 1: Start the drawing function. Read: 0: Drawing function complete. 1: Drawing function is processing.	0	RW
6	Fill the Circle / Ellipse / Square / Rounded-rectangle Control 0: Non Fill 1: Fill	0	RW
5-4	Draw Circle / Ellipse / Square / Ellipse Curve / Rounded-rectangle Select 00b: Draw Circle / Ellipse 01b: Draw Arc 10b: Draw Rectangle 11b: Draw Rounded-Rectangle	0	RW
3-2	NA	NA	NA
1-0	Draw Circle / Ellipse Curve Part Select (DECP) 00b: bottom-left Ellipse Curve 01b: upper-left Ellipse Curve 10b: upper-right Ellipse Curve 11b: bottom-right Ellipse Curve	0	RW

REG[76h] Draw Circle/Ellipse/Ellipse Curve/Circle Square Control Register 1 (DCR1)

REG[78h-77h] Draw Circle/Ellipse/Rounded-Rectangle Major-Radius Register (ELL_A)

Bit	Description	Default	Access
	Draw Circle/Ellipse/Rounded-rectangle Major-Radius		
	REG[77h] mapping to ELL_A[7:0]		
7-0	REG[78h] bit[4:0] mapping to ELL_A[12:8], bit[7:5] are not used.	0	RW
	If drawing a circle, then the major radius must be equal to the minor radius (ELL_A = ELL_B).		

REG[7Ah-79h] Draw Circle/Ellipse/Rounded-rectangle Minor-Radius Register (ELL_B)

Bit	Description	Default	Access
7-0	Draw Circle/Ellipse/Rounded-rectangle Minor-Radius REG[79h] mapping to ELL_B[7:0] REG[7Ah] bit[4:0] mapping to ELL_B[12:8], bit[7:5] are not used.	0	RW

REG[7Ch-7Bh] Draw Circle/Ellipse/Rounded-Rectangle Center X-Coordinates Register (DEHR)

Bit	Description	Default	Access
	Draw Circle/Ellipse/Rounded-rectangle Center X-coordinates DEHR[12:0]		
7-0	REG[7Bh] mapping to DEHR[7:0] REG[7Ch] bit[4:0] mapping to DEHR[12:8], bit[7:5] are not used.	0	RW

REG[7Eh-7Dh] Draw Circle/Ellipse/Rounded-Rectangle Center Y-Coordinates Register (DEVR)

Bit	Description	Default	Access
7-0	Draw Circle/Ellipse/Rounded-rectangle Center Y-coordinates DEHR[12:0] REG[7Dh] mapping to DEVR[7:0]	0	RW
7-0	REG[7Eh] bit[4:0] mapping to DEVR[12:8], bit[7:5] are not used.	U	KVV

Note: The unit of REG[77h] ~ REG[7Eh] is Pixel.

REG[D2h] Foreground Color Register - Red (FGCR)

Bit	Description	Default	Access
	Foreground Color – Red (for Draw mode, Text mode, and Color Expansion mode)		
7-0	256 Colors: Red mapping to bit[7:5]	FFh	RW
	65K Colors: Red mapping to bit[7:3]		
	16.7M Colors: Red mapping to bit[7:0]		

REG[D3h] Foreground Color Register - Green (FGCG)

Bit	Description	Default	Access
7-0	Foreground Color – Green (for Draw mode, Text mode, and Color Expansion mode)	FFh	RW
	256 Colors: Green mapping to bit[7:5]		
	65K Colors: Green mapping to bit[7:2]		
	16.7M Colors: Green mapping to bit[7:0]		

REG[D4h] Foreground Color Register - Blue (FGCB)

Bit	Description	Default	Access
7-0	Foreground Color – Blue (for Draw mode, Text mode and Color Expansion mode)	FFh	RW
	256 Colors: Blue mapping to bit[7:6]		
	65K Colors: Blue mapping to bit[7:3]		
	16.7M Colors: Blue mapping to bit[7:0]		

Note: For Background color setting, please refer to the Text Engine Registers REG[D5h–D7h].

19.7 PWM Control Registers

REG[84h] PWM Prescaler Register (PSCLR)

Bit	Description	Default	Access
7-0	PWM Pre-scaler Register This register determine the pre-scaler value for Timer 0 and 1. The Base Frequency is: Core_Freq / (Prescaler + 1)	0	RW

REG[85h] PWM Clock Mux Register (PMUXR)

Bit	Description	Default	Access
7-6	Setup PWM Timer-1 Divisor (Select 2^{nd} Clock Divider's MUX Input for PWM Timer-1) 00b = 1 01b = 1/2 10b = 1/4 11b = 1/8	0	RW
5-4	Setup PWM Timer-0 Divisor (Select 2^{nd} Clock Divider's MUX Input for PWM Timer-0) 00b = 1 01b = 1/2 10b = 1/4 11b = 1/8	0	RW
3-2	 PWM[1] Function Control 0xb: PWM[1] output system error flag (Scan FIFO POP error or Memory access out of range) 10b: PWM[1] output PWM timer 1 event or invert of PWM timer 0 11b: PWM[1] output Oscillator Clock 	0	RW
1-0	PWM[0] Function Control 0xb: PWM[0] becomes GPIOC[7] 10b: PWM[0] output PWM Timer 0 11b: PWM[0] output Core Clock (CCLK).	0	RW

REG[86h] PWM Configuration Register (PCFGR)

Bit	Description	Default	Access
7	NA	NA	NA
6	PWM Timer-1 Output Inverter On/Off Determine the output inverter on/off for Timer 1. 0 = Inverter off 1 = Inverter on for PWM1	0	RW
5	PWM Timer-1 Auto Reload On/Off Determine auto reload on/off for Timer 1. 0: One-Shot Mode 1: Interval Mode (Auto Reload)	1	RW
4	 PWM Timer-1 Start/Stop 0: Stop 1: Start In Interval Mode, Host needs to program it as 0 to stop PWM timer. In One-shot Mode, this bit will be auto cleared. The Host may read this bit to find out if the current PWMx is running or stopped. 	0	RW
3	PWM Timer-0 Dead Zone Enable 0: Disable 1: Enable	0	RW
2	PWM Timer-0 Output Inverter On/Off Determine the output inverter on/off for Timer 0. 0 = Inverter off 1 = Inverter on for PWM0	0	RW
1	PWM Timer-0 Auto Reload On/Off Determine auto reload on/off for Timer 0. 0: One-Shot Mode 1: Interval Mode (Auto Reload)	1	RW
0	 PWM Timer-0 Start/Stop 0: Stop 1: Start In Interval Mode, Host needs to program it as 0 to stop PWM timer. In One-shot Mode, this bit will be auto cleared. The Host may read this bit to find out if the current PWMx is running or stopped. 	0	RW

REG[87h] Timer-0 Dead Zone Length Register [DZ_LENGTH]

Bit	Description	Default	Access
7-0	Timer-0 Dead Zone Length Register These 8 bits determine the dead zone length. The 1 unit time of the dead zone length is equal to Timer 0.	0	RW

LT768x_DS_ENG / V4.2

REG[88h-89h] Timer-0 Compare Buffer Register [TCMPB0]

Bit	Description	Default	Access
7-0	Timer-0 compare Buffer Register REG[88h] mapping to TCMPB0 [7:0] REG[89h] mapping to TCMPB0 [15:8] The Timer-0 Compare Buffer Registers have a total of 16bits. When the counter is equal to or less than the value of this register, and if INV_ON bit is Off, then PWM1 output is high level.	0	RW

REG[8Ah-8Bh] Timer-0 Count Buffer Register [TCNTB0]

Bit	Description	Default	Access
7-0	Timer-0 Count Buffer Register [15:0] REG[8Ah] mapping to TCNTB0 [7:0] REG[8Bh] mapping to TCNTB0 [15:8] The Timer-0 count registers have a total of 16bit. When the counter is equal to 0 and the Reload_EN is enabled, the PWM will reload the value of this register to the counter. When the PWM begins to count, the current count value can be read back through this register.	0	RW

REG[8Ch-8Dh] Timer-1 Compare Buffer Register [TCMPB1]

Bit	Description	Default	Access
7-0	Timer-1 Compare Buffer Register REG[8Ch] mapping to TCMPB1 [7:0] REG[8Dh] mapping to TCMPB1 [15:8] The Timer-1 Compare Buffer Registers have a total of 16bits. When the counter is equal to or less than the value of this register, and if INV_ON bit is Off, then PWM1 output is high level.	0	RW

REG[8Eh-8Fh] Timer-1 Count Buffer Register [TCNTB1]

Bit	Description	Default	Access
7-0	Timer-1 Count Buffer Register [15:0] REG[8Eh] mapping to TCNTB1 [7:0] REG[8Fh] mapping to TCNTB1 [15:8] The Timer-1 count registers have a total of 16bit. When the counter is equal to 0 and the Reload_EN is enabled, the PWM will reload the value of this register to the counter. When the PWM begins to count, the current count value can be read back through this register.	0	RW

19.8 Bit Block Transfer Engine (BTE) Control Registers

REG[90h] BTE Function Control Register 0 (BLT_CTRL0)

Bit	Description	Default	Access
7-5	NA	0	RO
4	BTE Function Enable / Status Write: 0: No Action 1: BTE Enable Read: 0: BTE function is idle. 1: BTE function is busy. When BTE function is enabled, Host is not allowed to R/W memory through canvas[active window].	0	RW
3-1	NA	0	RO
0	Pattern Format 0: 8*8 1: 16*16	0	RW

LT768x_DS_ENG / V4.2

REG[91h] BTE Function Control Register1 (BLT_CTRL1)

Bit			Description		Default	Access
	ROP st	tands for Ra collocate wit	Color Expansion Starting ster Operation. Some of BTE operatio h ROP for advanced functions. Table 19-3: BTE ROP Code	n code		
		Bit[7:4]	Description			
		0000b	0 (Blackness)			
		0001b	~S0 • ~S1 or ~ (S0+S1)			
		0010b	~S0 · S1			
		0011b	~S0			
		0100b	S0 · ~S1			
		0101b	~S1			
		0110b	S0^S1			
7-4		0111b	~S0+~S1 or ~ (S0 · S1)	0	0	RW
		1000b	S0 · S1			
		1001b	~ (S0^S1)			
		1010b	S1			
		1011b	~S0+S1			
		1100b	SO			
		1101b	S0+~S1			
		1110b	S0+S1			
		1111b	1 (Whiteness)			
	chroma bit on E For 8-b	kkey (08h / 0 3TE window bits Host, th	ode function is color expansion with or y 09h / Eh / Fh), then these bits stand for s left boundary. MSB stands for left mos e value should be within 0 to 7. For uld be within 0 to 15.	starting t pixel.		
3-0	LT768x BTE fu	nctions. So	de bit[3:0] bedded a 2D BTE Engine, it can exec me of BTE Operation Code has to co for advanced functions.		0	RW

REG[91h]				
Bit[3:0]	Description			
	MCU Write with ROP			
0000b	S0: Data comes from Host			
	S1: Data comes from Memory			
	D: According to ROP write to Memory			
0001b	Reserved			
	Memory Copy with ROP			
0010b	S0: Data comes from Memory			
	S1: Data comes from Memory			
	D: According to ROP Write to memory			
0011b	Reserved			
	MCU Write with Chroma Keying (without ROP)			
04001	S0: Data comes from Host			
0100b	If the Host data is not the same color as the Chroma Key			
	(Background Color Register), then the data will be written to the destination memory.			
	Memory Copy (move) with Chroma keying (without ROP)			
	S0: Data comes from Memory			
0101b	If the S0 data is not the same color as the chroma key Background Color Register), then the data will be written to the destination.			
0110b	Pattern Fill with ROP			
duru	S0: Pattern stored in memory.			
	Pattern Fill with Chroma Keying			
0444	S0: Pattern stored in memory.			
0111b	If the data for S0 is not the same as the Chroma Key (Background Color) color, then it will be written to the destination memory.			
	MCU Write with Color Expansion			
1000b	S0: Data comes from Host			
	BTE converts it to the specified color and color depth, and writes it to the destination memory.			
	MCU Write with Color Expansion and Chroma Keying			
1001b	The monochrome data required by S0 is written by MCU if the bit of monochrome data is 1. The processed data is a foreground color, and if the monochrome data is 0, it is not written. The data is also referenced to the destination memory setting.			
10105	Memory Copy with Opacity			
1010b	S0, S1 & D: Data come from Memory			

Table 19-4: BTE Operation Code

REG[91h] Bit[3:0]	Description
	MCU Write with Opacity
	S0: Data comes from Host
1011b	S1: Data comes from Memory
	DT: Refer to the alpha blending operation and write to the destination memory.
	Solid Fill
1100b	The written value is the register setting value, and the written target is the destination memory.
1101b	Reserved
	Memory Copy with Color Expansion
	S0 and DT are in memory and S1 is not in use.
1110b	S0 must be loaded through the microprocessor's write or DMA to preload 8bpp or 16bpp of color depth into memory, so the S0 color depth should follow that color depth.
	Memory Copy with Color Expansion and Chroma Keying
	S0 and DT are in memory and S1 is not in use.
1111b	S0 must be loaded through the microprocessor's write or DMA to preload 8bpp or 16bpp of color depth into memory, so the S0 color depth should follow that color depth.
	If the S0 data bit = 0, then no data will be written to DT. If the S0 data bit = 1, the Foreground Color data will be written to DT.

REG[92h] Source 0/1 & Destination Color Depth (BLT_COLR)

Bit	Description	Default	Access
7	NA	NA	NA
6-5	S0 Color Depth 00b: 256 Color (8bpp) 01b: 64k Color (16bpp) 1xb: 16M Color (24bpp)	0	RW
4-2	S1 Color Depth 000b: 256 Color (8bpp) 001b: 64k Color (16bpp) 010b: 16M Color (24bpp) 011b: Constant color (S1 memory start address' setting must be defined as S1 constant color definition) 100b: 8 bit pixel alpha blending 101b: 16 bit pixel alpha blending	0	RW

Bit	Description	Default	Access
	Destination Color Depth		
1.0	00b: 256 Color (8bpp)	0	RW
1-0	01b: 64k Color (16bpp)		
	1xb: 16M Color (24bpp)		

REG[93h-96h] Source 0 Memory Start Address (S0_STR)

Bit	Description	Default	Access
7-0	Source 0 Memory Start Address [31:2] REG[93h] mapping to S0_STR [7:2] REG[94h] mapping to S0_STR [15:8] REG[95h] mapping to S0_STR [23:16] REG[96h] mapping to S0_STR [31:24] Note: REG[93h] bit[1:0] is fixed to 0.	0	RW

REG[97h-98h] Source 0 Image Width (S0_WTH)

Bit	Description	Default	Access
7-0	 Source 0 Image Width [12:2] REG[97h] mapping to S0_WTH [7:2] REG[98h] bit[4:0] mapping to S0_WTH [12:8], bit[7-5] are not used. Note: It must be divisible by 4, and REG[97h] bit[1:0] must be fixed to 0. Unit: Pixel. 	0	RW

REG[99h-9Ah] Source 0 Window Upper-Left Corner X-Coordinates (S0_X)

Bit	Description	Default	Access
7-0	Source 0 Window Upper-Left Corner X-Coordinates [12:0] REG[99h] mapping to S0_X [7:0] REG[9Ah] bit[4:0] mapping to S0_X [12:8], bit[7-5] are not used.	0	RW

REG[9Bh-9Ch] Source 0 Window Upper-Left corner Y-Coordinates (S0_Y)

Bit	Description	Default	Access
7-0	Source 0 Window Upper-Left Corner Y-Coordinates [12:0] REG[9Bh] mapping to S0_Y [7:0] REG[9Ch] bit[4:0] mapping to S0_Y[12:8], bit[7-5] are not used.	0	RW

REG[9Dh-A0h] Source 1 Memory Start Address 0 (S1_STR)

Bit	Description	Default	Access
	Source 1 Memory Start Address [31:2]	0	
	REG[9Dh] bit[7:2] mapping to S1_STR[7:2]		
	REG[9Eh] mapping to S1_STR[15:8]		
	REG[9Fh] mapping to S1_STR[23:16]		RW
7.0	REG[A0h] mapping to S1_STR[31:24]		
7-0	Note1: REG[9Dh] bit[1:0] must be fixed to 0.		
	Note2: If source 1(S1) is set as Constant Color then S1 memory start address' setting will be defined as S1 constant color definition: REG[9Dh] is RED element (S1_RED), REG[9Eh] is Green element (S1_GREEN), REG[9Fh] is Blue Element (S1_BLUE), REG[A0h] is not used.		

REG[A1h-A2h] Source 1 Image Width (S1_WTH)

Bit	Description	Default	Access
7-0	 Source 1 Image Width [12:2] REG[A1h] [7:2] mapping to S1_WTH [7:2] REG[A2h] bit[4:0] mapping to S1_WTH[12:8], bit[7:5] are not used. Note: It must be divisible by 4, and REG[A1h] bit[1:0] must be fixed to 0. Unit: Pixel. 	0	RW

REG[A3h-A4h] Source 1 Window Upper-Left Corner X-Coordinates (S1_X)

Bit	Description	Default	Access
7-0	Source 1 Window Upper-Left Corner X-Coordinates [12:0] REG[A3h] mapping to S1_X [7:0] REG[A4h] bit[4:0] mapping to S1_X [12:8], bit[7:5] are not used.	0	RW

REG[A5h-A6h] Source 1 Window Upper-Left corner Y-Coordinates (S1_Y)

Bit	Description	Default	Access
7-0	Source 1 Window Upper-Left Corner Y-Coordinates [12:0] REG[A5h] mapping to S1_Y [7:0] REG[A6h] bit[4:0] mapping to S1_Y [12:8], bit[7:5] are not used.	0	RW

REG[A7h-AAh] Destination Memory Start Address (DT_STR)

Bit	Description	Default	Access
7-2	Destination Memory Start Address [31:2] REG[A7h] bit[7:2] mapping to DT_STR [7:2] REG[A8h] mapping to DT_STR [15:8] REG[A9h] mapping to DT_STR [23:16] REG[AAh] mapping to DT_STR [31:24] Note: REG[A7h] bit[1:0] must be fixed to 0.	0	RW

Note: The destination memory start address cannot be within the source 0 or Source 1 block, otherwise the output will be incorrect.

Start Address ~ S0/1's (Image_Width)* (Image_Height)* ([1|2|3]Color Depth)

REG[ABh-ACh] Destination Image Width (DT_WTH)

Bit	Description	Default	Access
7-0	 Destination Image Width [12:2] REG[ABh] mapping to DT _WTH [7:2] REG[ACh] bit[4:0] mapping to DT _WTH [12:8], REG[ACh] bit[7-5] are not used. Note: It must be divisible by 4. REG[ABh] bit[1:0] must be fixed to 0. Unit: Pixel. 	0	RW

REG[ADh-AEh] Destination Window Upper-Left Corner X-Coordinates (DT_X)

Bit	Description	Default	Access
7-0	Destination Window Upper-Left Corner X-Coordinates [12:0] REG[ADh] mapping to DT_X [7:0] REG[AEh] bit[4:0] mapping to DT_X [12:8], bit[7-5] are not used.	0	RW

REG[AFh-B0h] Destination Window Upper-Left Corner Y-Coordinates (DT_Y)

Bit	Description	Default	Access
7-0	Destination Window Upper-Left Corner X-Coordinates [12:0] REG[AFh] mapping to DT_Y [7:0] REG[B0h] bit[4:0] mapping to DT_Y [12:8], bit[7-5] are not used.	0	RW

REG[B1h-B2h] BTE Window Width (BLT _WTH)

Bit	Description	Default	Access
7-0	BTE Window Width [12:0]		
	REG[B1h] mapping to BLT_WTH [7:0]		
	REG[B2h] bit[4:0] mapping to BLT_WTH [12:8], bit[7-5] are not used.	0	RW
	When all Image Fill (Pattern Fill) functions for BTE are enabled, the BTE window Width is ignored and automatically set to 8 or 16. Unit: Pixel.		

REG[B3h-B4h] BTE Window Height (BLT_HIG)

Bit	Description	Default	Access
7-0	 Destination Image Height [12:0] REG[B3h] mapping to BLT_HIG [7:0] REG[B4h] bit[4:0] mapping to BLT_HIG [12:8], bit[7-5] are not used. When all Image Fill (Pattern Fill) functions for BTE are enabled, the BTE window Height is ignored and automatically set to 8 or 16. Unit: Pixel. 	0	RW

REG[B5h] Alpha Blending (APB_CTRL)

Bit	Description	Default	Access
7-4	NA	NA	NA
5-0	Window Alpha Blending Effect for S0 & S1 The value of alpha in the color code ranges from 1.0 down to 0.0, where 1.0 represents a fully opaque color, and 0.0 represents a fully transparent color. 00h: 0 01h: 1/32 02h: 2/32 : 1Eh: 30/32 1Fh: 31/32 2Xh: 1 Output Effect	0	RW
	= [S0 image * (1 - Alpha Setting Value)] + (S1 Image * Alpha Setting Value)		

19.9 Serial Flash & SPI Master Control Registers

REG[B6h] Serial Flash DMA Controller REG (DMA_CTRL)

Bit	Description	Default	Access
7-1	NA	0	RO
0	 Write: DMA Start Bit This bit can be written to 1 via Host, and the circuit will be automatically cleared to 0 right away. This bit cannot be used with Text Write, so if DMA is enabled, it cannot be set to text mode and input character code. Read: DMA Busy Check Bit 0: Idle 1: Busy The DMA transmission of a Serial Flash must be in Graphic Mode, and it must first set the canvas destination location, destination width, color depth, and addressing mode in the Display RAM. 	0	RW

REG[B7h] Serial Flash/ROM Controller Register (SFL_CTRL)

Bit	Description	Default	Access
7	Serial Flash/ROM Select 0: Serial Flash/ROM 0 I/F is selected 1: Serial Flash/ROM 1 I/F is selected	0	RW
6	Serial Flash /ROM Access Mode 0: Text Mode, used for CGRAM 1: DMA Mode, used for CGRAM Pattern Boot Start Image or OSD.	0	RW
5	Serial Flash/ROM Address Mode 0: 24bits address mode 1: 32bits address mode If user wants to use 32 bits address mode, Host must send EX4B command (B7h) to serial flash then set this bit to 1. Host also may check this bit to find out whether serial flash entered 32 bits address mode during initial display function.	0	RW
4	NA	NA	NA
3-0	 Read Command Code & Behavior Selection 000xb: 1x Read Command - 03h. Normal Read Speed. Data is read from SFDI. Without dummy cycle between address and data 010xb: 1x Read Command - 0Bh. Faster Read speed. Data is read from SFDI. LT768x inserts 8 dummy cycles between address and data. 1x0xb: 1x Read Command - 1Bh. Fastest Read Speed. Data read from SFDI. LT768x inserts 16 dummy cycles between address and data. 	0	R/W

Bit	Description	Default	Access
	xx10b: 2x Read Command - 3Bh. Interleaved data input from SFDI and SFDO. LT768x inserts 8 dummy cycles (Dual Mode 0) between address and data. Refer to Figure 10-8.		
	xx11b: 2x Read Command – BBh. Interleaved data input from SFDI and SFDO. LT768x inserts 4 dummy cycles (Dual Mode 1) between address and data. Refer to Figure 10-9.		
	Note: Not all of Serial Flash supports above read command. Please refer to Serial Flash's datasheet to select proper read command.		

REG[B8h] SPI Master Tx /Rx FIFO Data Register (SPIDR)

Bit	Description	Default	Access
7-0	SPI Master Tx /Rx FIFO Data Register After Host programming the LT768x's control register, SPI transfers can be initiated. A transfer is initiated by writing to the Serial Peripheral Data Register [SPIDR]. Writing to the Serial Peripheral Data Register is actually writing to a 16 entries deep FIFO called the Write FIFO. Each write access adds a data byte to the Write FIFO. When the core is enabled – SS_ACTIVE is set '1' – and the Write FIFO is not full, the core automatically transfers the oldest data byte. Receiving data is done simultaneously with transmitting data; whenever a data byte is transmitted, a data byte is received. For each byte that needs to be read from a device, a dummy byte needs to be written to the Write FIFO. This instructs the core to initiate an SPI transfer, simultaneously transmitting the dummy byte and receiving the desired data. Whenever a transfer is finished, the received data byte is added to the Read FIFO. The Read FIFO is the counterpart of the Write FIFO. It is an independent 16 entries deep FIFO. The FIFO contents can be read by reading from the Serial Peripheral Data Register [SPIDR]	NA	RW

REG[B9h] SPI Master Control Register (SPIMCR2)

Bit		Description		Default	Access
7	NA			0	RO
6		nterrupt. nterrupt. s SPI Master interrupt f t event to inform Host,	lag, then LT768x will not but Host still may check	0	RW
5	0: Slave Se	Select Drive on Which lect Signal (SS#) drive o lect Signal (SS#) drive o	on SFCS0#	0	RW
4	0: Inactive (1: Active (S While Slave Se engine will stay Note: It is sug	in idle state.	FO will be cleared and the elect Signal is active, the	0	RW
3	Mask Interrup 0: Unmask. 1: Mask.	t for FIFO Overflow Err	or [OVFIRQMSK]	1	RW
2	Mask Interrup Idle [EMTIRQM 0: Unmask. 1: Mask.	ISK]	npty & SPI Engine/FSM	1	RW
1:0	SPI Operation When DMA or 3 will be suppo	external CGROM is enal	tion Mode CPHA: Clock Phase Bit 0 1	0	RW
	2 3	1	0		

■ Please refer to Section 15.2 for SPI Master description.

- When CPOL = 0, SCK is 0 in inactive.
 - _ CPHA = 0: data are read on rising edge (low->high), and data are changed on a falling edge (high->low).

- _ CPHA = 1: data are read on falling edge (high->low), and data are changed on a rising edge (low->high).
- When CPOL = 1, SCK is 1 in inactive (inversion of CPOL = 0)
 - _ CPHA = 0: data are read on falling edge (high->low), and data are changed on a rising edge (low->high).
 - _ CPHA = 1: data are read on rising edge (low->high), and data are changed on a falling edge (high->low).

REG[BAh] SPI Master Status Register (SPIMSR)

🗸 LT768x

Bit	Description	Default	Access
7	Tx FIFO Empty Flag 0: Not Empty 1: Empty	1	RO
6	Tx FIFO Full Flag 0: Not Full 1: Full	0	RO
5	Rx FIFO Empty Flag 0: Not empty 1: Empty	1	RO
4	Rx FIFO Full Flag 0: Not Full 1: Full	0	RO
3	Overflow Interrupt Flag Write 1 will clear this flag	0	RW
2	Tx FIFO Empty & SPI Engine/FSM Idle Interrupt Flag Write 1 will clear this flag	0	RW
1-0	NA	0	RO

REG[BBh] SPI Clock period (SPI_DIVSOR)

Bit	Description	Default	Access
7-0	SPI Clock Period Set SPI clock based on the system clock and the clock requested by the SPI device. F _{SCK} = F _{CORE} / (Divisor + 1)*2	3	RW

REG[BCh-BFh] Serial Flash DMA Source Starting Address (DMA_SSTR)

Bit	Description	Default	Access
	Serial Flash DMA Source Start Address[31:0]		
	REG[BCh] mapping to DMA_SSTR[7:0]		
	REG[BDh] mapping to DMA_SSTR[15:8]		
7-0	REG[BEh] mapping to DMA_SSTR[23:16]	0	RW
	REG[BFh] mapping to DMA_SSTR[31:24]		
	These registers index Serial Flash Address [31:0]. Directly point to the starting position of the source images.		

REG[C0h-C1h] DMA Destination Window Upper-Left Corner X-Coordinates (DMA_DX)

Bit	Description	Default	Access
7-0	When REG 5Eh (AW_COLOR) bit 2 = 0 (Block Mode): This register defines DMA Destination Window Upper-Left corner X-coordinates [12:0] on Canvas area. REG[C0h] mapping to DMA_DX[7:0] REG[C1h] bit[4:0] mapping to DMA_DX[12:8], bit[7:5] are not used.	0	RW
	When REG 5Eh (AW_COLOR) bit 2 = 1 (Linear Mode): This register defines Destination address [15:2] in Display RAM. REG[C0h] bit[7:2] mapping to DMA_DX[7:2] REG[C1h] mapping to DMA_DX[15:8]		

REG[C2h-C3h] DMA Destination Window Upper-Left Corner Y-Coordinates (DMA_DY)

Bit	Description	Default	Access
7-0	When REG 5Eh (AW_COLOR) bit 2 = 0 (Block Mode): This register defines DMA Destination Window Upper-Left corner Y-coordinates [12:0] on Canvas area. REG[C2h] mapping to DMA_DY[7:0] REG[C3h] bit[4:0] mapping to DMA_DY[12:8], bit[7:5] are not used.	0	RW
	When REG 5Eh (AW_COLOR) bit 2 = 1 (Linear Mode): This register defines Destination address [31:16] in Display RAM. REG[C2h] mapping to DMA_DY[23:16] REG[C3h] mapping to DMA_DY[31:24]		

REG[C4h] – REG[C5h]: Reserved

Bit	Description	Default	Access
7-0	NA	0	RO

REG[C6h-C7h] DMA Block Width (DMAW_WTH)

Bit	Description	Default	Access
	When REG 5Eh (AW_COLOR) bit 2 = 0 (Block Mode): DMA Block Width [15:0]	0	RW
	REG[C6h] mapping to DMAW_WTH[7:0]		
7.0	REG[C7h] mapping to DMAW_WTH[15:8]		
7-0	When REG 5Eh (AW_COLOR) bit 2 = 1 (Linear Mode): DMA Transfer Number [15:0]		
	REG[C6h] mapping to DMAW_WTH[7:0]		
	REG[C7h] mapping to DMAW_WTH[15:8]		

REG[C8h-C9h] DMA Block Height (DMAW_HIGH)

Bit	Description	Default	Access
	When REG 5Eh (AW_COLOR) bit 2 = 0 (Block Mode): DMA Block Height [15:0]	0	RW
	REG[C8h] mapping to DMAW_HIGH[7:0]		
7.0	REG[C9h] mapping to DMAW_HIGH[15:8]		
7-0	When REG 5Eh (AW_COLOR) bit 2 = 1 (Linear Mode): DMA Transfer Number [31:16]		
	REG[C8h] mapping to DMAW_HIGH [23:16]		
	REG[C9h] mapping to DMAW_HIGH [31:24]		

REG[CAh-CBh] DMA Source Picture Width (DMA_SWTH)

Bit	Description	Default	Access
7-0	DMA Source Picture Width [12:0] REG[CAh] mapping to DMA_SWTH[7:0] REG[CBh] bit[4:0] mapping to DMA_SWTH[12:8], bit[7:5] are not used. Unit: Pixel.	0	RW

Please refer to Section 15.3 description of SPI Flash Controller.

19.10 Text Engine Registers

REG[CCh] Character Control Register 0 (CCR0)

Bit	Description	Default	Access
7:6	Character Source Selection 00b: Select internal CGROM Character 01b: Select external CGROM Character 10b: Select user-defined Character. 11b: NA	0	RW
5-4	 Character Height Setting for user-defined Character 00b: 16 dots, ex. 8*16 / 16*16 01b: 24 dots, ex. 12*24 / 24*24 10b: 32 dots, ex. 16*32 / 32*32 Note: 1. User-defined character width is decided by character code; width for code < 8000h is 8/12/16. width for code >=8000h is 16/24/32. 2.Internal CGROM supports sizes of 8*16 / 12*24 / 16*32. 	0	RW
3-2	N	0	RO
1-0	Character Selection for Internal CGROM When bit[7:6] = 00b, Internal CGROM supports character sets with the standard coding of ISO/IEC 8859-1,2,4,5, which supports English and most of European country languages 00b: ISO/IEC 8859-1 01b: ISO/IEC 8859-2 10b: ISO/IEC 8859-4 11b: ISO/IEC 8859-5	0	RW

REG[CDh] Character Control Register 1 (CCR1)

Bit	Description	Default	Access
7	 Full Alignment Selection 0: Full alignment disable 1: Full alignment enable. When Full alignment is enable, displayed character width is equal to (Character Height)/2 if character width is equal to or smaller than (Character Height)/2, otherwise displayed font width is equal to Character Height. 	0	RW
6	 Chroma Keying Enable on Text Input 0: Character's background displayed with specified color. 1: Character's background displayed with original canvas' background. 	0	RW
5	NA	NA	NA

Bit	Description	Default	Access
4	 Character Rotation 0: Normal. Text direction from left to right then from top to bottom 1: Counterclockwise 90 degree & vertical flip. Text direction from top to bottom then from left to right (VDIR should be set as 1). This attribute can be changed only when previous Text write is finished (Core_Busy = 0) 	0	RW
3-2	Character Width Enlargement Factor 00b: X1. 01b: X2. 10b: X3. 11b: X4.	0	RW
1-0	Character Height Enlargement Factor 00b: X1. 01b: X2. 10b: X3. 11b: X4.	0	RW

REG[CEh-CFh] RESERVED

Bit	Description	Default	Access
7-0	NA	NA	NA

REG[D0h] Character Line gap Setting Register (FLDR)

Bit	Description	Default	Access
7-5	NA	NA	NA
4-0	Character Line Gap Setting Setting the character line gap. When entered character reaches the boundary of the active window, the controller jump to the next line. (Unit: pixel) Color of gap will be the same as the background color. It will not be enlarged by character enlargement function.	0	RW

REG[D1h] Character to Character Space Setting Register (F2FSSR)

Bit	Description	Default	Access
7-6	NA	NA	NA
5-0	Character to Character Space Setting 00h: 0 pixel 01h: 1 pixel 02h: 2 pixels : 3Fh: 63 pixels Color of space will be the same as the background color. It will not be enlarged by character enlargement function.	0	RW

REG[D2h] Foreground Color Register - Red (FGCR)

Bit	Description	Default	Access
	Foreground Color – <mark>Red</mark> (for Draw, Text, and Color Expansion)		
7-0	256 Colors: Red mapping to bit[7:5]	FFh	RW
	65K Colors: Red mapping to bit[7:3]		
	16.7M Colors: Red mapping to bit[7:0]		

REG[D3h] Foreground Color Register - Green (FGCG)

Bit	Description	Default	Access
7-0	 Foreground Color – Green (for Draw, Text, and Color Expansion) 256 Colors: Green mapping to bit[7:5] 65K Colors: Green mapping to bit[7:2] 16.7M Colors: Green mapping to bit[7:0] 	FFh	RW

REG[D4h] Foreground Color Register - Blue (FGCB)

Bit	Description	Default	Access
7-0	Foreground Color – Blue (for Draw, Text, and Color Expansion)		
	 256 Colors: Blue mapping to bit[7:6] 65K Colors: Blue mapping to bit[7:3] 	FFh	RW
	■ 16.7M Colors: Blue mapping to bit[7:0]		

REG[D5h] Background Color Register - Red (BGCR)

Bit	Description	Default	Access
	Background Color – Red (for Text and Color Expansion)		RW
	256 Colors: Red mapping to bit[7:5]	00h	
	65K Colors: Red mapping to bit[7:3]		
7.0	16.7M Colors: Red mapping to bit[7:0]		
7-0	Note: No matter background transparency is enabled or not, please do not set to the same value as Foreground Color, otherwise, image and text will become a square with Foreground Color. When using BTE function, these two values should not be set to the same either.	UUN	κw

REG[D6h] Background Color Register - Green (BGCG)

Bit	Description	Default	Access
	Background Color – Green (for Text and Color Expansion)		RW
	256 Colors: Green mapping to bit[7:5]	00h	
	65K Colors: Green mapping to bit[7:2]		
7.0	16.7M Colors: Green mapping to bit[7:0]		
7-0	Note: No matter background transparency is enabled or not, please do not set to the same value as Foreground Color, otherwise, image and text will become a square with Foreground Color. When using BTE function, these two values should not be set to the same either.	UUN	KW

REG[D7h] Background Color Register - Blue (BGCB)

Bit	Description	Default	Access
	Background Color –Blue (for Text and Color Expansion)		
	256 Colors: Blue mapping to bit[7:6]		
	65K Colors: Blue mapping to bit[7:3]		
7.0	16.7M Colors: Blue mapping to bit[7:0]		
7-0	Note: No matter background transparency is enabled or not, please do not set to the same value as Foreground Color, otherwise, image and text will become a square with Foreground Color. When using BTE function, these two values should not be set to the same either.	00h	RW

REG[D8h] – REG[DAh]: Reserved

Bit	Description	Default	Access
7-0	NA	NA	NA

REG[DBh] CGRAM Start Address 0 (CGRAM_STR0)

Bit	Description	Default	Access
7-0	CGRAM Start ADDRESS [7:0] User-defined Characters space REG[DBh] mapping to CGRAM_STR [7:0] REG[DCh] mapping to CGRAM_STR [15:8] REG[DEh] mapping to CGRAM_STR [23:16] REG[DEh] mapping to CGRAM_STR [31:24] Host must save CGRAM data based on the setting of canvas,	0	RW
	and set CGRAM address so that Text engine knows where to fetch CGRAM data.		

If users want to change rotate attribute, character line gap, character-to-character space, foreground color, background color and Text/graphic mode settings, please make sure Task_Busy (Status Register bit3) status bit is low.

19.11 Power Management Control Register

REG[DFh]: Power Management Register (PMU)

Bit	Description	Default	Access
7	 Enter Power Saving State 0: Normal state or wake up from power saving state 1: Enter power saving state. Note: There are 3 ways to wake up from power saving state: External interrupt event, Key Scan wakeup and Software wakeup. Writing this bit to 0 will generate Software wakeup. It will not be cleared until chip resume. MCU must wait until system is awekened before writting to other registers. Users may check this bit or check status bit1 (power saving) to find out if the system is back to the normal state. 	0	RW
6-2	NA	NA	NA
1-0	 Power Saving Mode Definition 00b: NA 01b: Standby Mode, CCLK & PCLK will Stop. MCLK is provided by MPLL. 10b: Suspend Mode, CCLK & PCLK will Stop. MCLK is provided by OSC. 11b: Sleep Mode, All of Clocks and PLL will Stop. 	3	RW

19.12 Display RAM Control Register

REG[E0h] SDRAM Attribute Register (SDRAR)

Bit	Description	Default	Access
7	 SDRAM Power Saving 0: Execute power down command to enter power saving mode 1: Execute self refresh command to enter power saving mode 	0	RW
6	Must keep 0.	0	RW
5	SDRAM Bank Number, SDR_BANK 0: 2 Banks (column addressing size only support 256 words) 1: 4 Banks	1	RW
4-3	SDRAM Row Addressing, SDR_ROW 00b: 2K (A0-A10) 01b: 4K (A0-A11) 1xb: 8K (A0-A12)	1	RW
2-0	SDRAM Column Addressing, SDR_COL 000b: 256 (A0-A7) 001b: 512 (A0-A8) 010b: 1,024 (A0-A9) 011b: 2,048 (A0-A9, A11) 1xxb: 4,096 (A0-A9, A11-A12)	0	RW

Table 19-6: The initialize of REG[E0h]

Model	Embedded Display RAM Type	REG[E0h]	Description
LT7681			
LT7683			
LT7686	128Mb, 16MB, 8M*16	0x29	Bank no: 4, Row Size: 4096, Column Size: 512
LT7680A-R			
LT7680B-R			

Note: The value of register REG[E0h] must be set according to the LT768x model name. Otherwise, the display of TFT panel will be abnormal and the image will be garbled.

REG[E1h] SDRAM Mode Register &	Extended Mode Register (SDRMD)

Bit	Description	Default	Access
7-3	Must keep 0.	0	RW
2-0	SDRAM CAS latency, SDR_CASLAT 010b: 2 SDRAM clock 011b: 3 SDRAM clock Others: Reserved Note: The suggest setting value of this register is 03h. This register is locked after SDR_INITDONE (REG[E4h] bit0) is set as 1.	011b	RW

REG[E2h-E3h] SDRAM Auto Refresh Interval (SDR_REF)

Bit	Description	Default	Access
	SDRAM Auto Refresh Interval		
	REG[E2h] mapping to SDR_REF [7:0]. REG[E3h] mapping to SDR_REF [15:8]		
7-0	The internal refresh time is determined by the refresh cycle of the SDRAM and the row size. For example, if the SDRAM frequency is 100MHz, SDRAM's refresh cycle Tref is 64ms, and the row size is 4,096, then the internal refresh time should be less than $64*10^{-3}$ / 4096 * $100*10^{6} \sim 1562 = 61$ Ah Therefore the REG[E3h][E2h] is set to 061Ah.	00h	RW
	Note: If this register is set to 0000h, SDRAM automatic refresh will be prohibited.		

Table 19-7: The Reference Setting of REG[E3h-E2h]

Model	REG[E3h]	REG[E2h]
LT7681		
LT7683		
LT7686	06h	1Ah
LT7680A-R		
LT7680B-R		

REG[E4h] SDRAM Control Register (SDRCR)

Bit	Description	Default	Access
7-4	Must keep 0.	0	RW
3	Report Warning Condition0: Disable or Clear warning flag1: Enable warning flagWarning conditions include (1) memory read cycle is close to the maximum address boundry of SDRAM (exceeding maximum address minus 512 bytes); (2) out of memory access range; (3) insufficient SDRAM bandwidth to fulfill panel's frame rate. Under the above situations, the warning event will be latched. The warning flag could be cleared by setting this bit to 0.	0	RW
2	SDRAM Timing Parameter Register Enable, SDR_PARAMEN 0: Disable Display RAM timing parameter registers 1: Enable Display RAM timing parameter registers	0	RW
1	Enter Power Saving Mode, SDR_PSAVING 0 to 1 transition will enter power saving mode 1 to 0 transition will exit power saving mode	0	RW
0	 Start SDRAM Initialization Procedure, SDR_INITDONE 0 to 1 transition will execute Display RAM initialization procedure. Read value '1' means Display RAM is initialized and ready for access. Once it is written as 1, it cannot be rewritten as 0. 1 to 0 transition: No operation. "Write 1" will execute Display RAM initialization procedure. 	0	RW

Note: The following Display RAM Timing Registers (REG[E0h-E3h]) are available only when SDR_PARAMEN (REG[E4] bit2) is set to 1.

REG[E0h] SDRAM Timing Parameter 1

Bit	Description	Default	Access
7-4	NA	0	RO
3-0	Time from Load Mode Command to Active/Refresh Command (T _{MRD}) 0000b: 1 SDRAM Clock 0001b: 2 SDRAM Clock 0010b: 3 SDRAM Clock : 1111b: 16 SDRAM Clock	2	RW

REG[E1h] SDRAM Timing Parameter 2

Bit	Description	Default	Access
7-4	Auto Refresh Period, T _{RFC} 0h – Fh: 1 ~ 16 SDRAM Clock (As REG[E0h] bit[3:0])	8	RW
3-0	Time of Exit SELF Refresh-to-ACTIVE Command (T_{xsr}) 0h – Fh: 1 ~ 16 SDRAM Clock	7	RW

REG[E2h] SDRAM Timing Parameter 3

Bit	Description	Default	Access
7-4	Time of Pre-charge Command Period (T_{RP}, 15/20ns) 0h – Fh: 1 ~ 16 SDRAM Clock	2	RW
3-0	Time of WRITE Recovery Time (T_{WR}) 0h – Fh: 1 ~ 16 SDRAM Clock	0	RW

REG[E3h] SDRAM Timing Parameter 4

Bit	Description	Default	Access
7-4	Delay Time of Active-to-Read/Write (T _{RCD}) 0h – Fh: 1 ~ 16 SDRAM Clock	2	RW
3-0	Time of Active-to-Precharge (T _{RAS}) 0h – Fh: 1 ~ 16 SDRAM Clock	6	RW

19.13 I2C Master Register

REG[E5h-E6h] I2C Master Clock Prescaler Register (I2CMCK)

Bit	Description	Default	Access
7-0	I2C Master Clock Pre-scaler [15:0] REG[E5h] mapping to I2CMCK[7:0]. REG[E6h] mapping to I2CMCK[15:8].	0	RW

REG[E7h] I2C Master Transmit Register (I2CMTXR)

Bit	Description	Default	Access
7-0	I2C Master Transmit [7:0]	0	RW

REG[E8h] I2C Master Receiver Register (I2CMRXR)

Bit	Description	Default	Access
7-0	I2C Master Receiver [7:0]	0	RW

REG[E9h] I2C Master Command Register (I2CMCMD)

Bit	Description	Default	Access
7	Start CommandWrite 1: Generate (repeated) start condition and be cleared by hardware automaticallyNote: This bit is always read as 0.	0	RW
6	Stop CommandWrite 1: Generate stop condition and be cleared by hardware.Note: This bit is always read as 0.	0	RW
5	 Read Command Write 1: Read form slave and be cleared by hardware automatically. Note: This bit is always read as 0. 	0	RW
4	 Write Command Write 1: Write to slave and be cleared by hardware automatically. Note: This bit is always read as 0. 	0	RW
3	Acknowledge Command Write 0: Send ACK Write 1: Send NACK Note: This bit is always read as 0.	0	RW
2-1	NA	0	RO

Bit	Description	Default	Access
0	Noise Filter 0: Disable 1: Enable	0	RW

REG[EAh] I2C Master Status Register (I2CMST)

Bit	Description	Default	Access
	Received Acknowledge from Slave		
7	0: Acknowledge received.	0	RO
	1: No Acknowledge received.		
	I2C Bus is Busy		
6	0: Idle. '0' after STOP signal detected	0	RO
	1: Busy. '1' after START signal detected		
5-2	NA	0	RO
	I2C Transfer in Progress		
1	0: when transfer complete	0	RO
	1: when transferring data		
	Arbitration Lost State		
0	When LT768x lost Arbitration, this bit will be set to 1.		
	Note: When a Stop signal is detected, but it is not required, then it means arbitration loss. The LT768x I2C Master will drive SDA to 1, but the other Master will drive SDA to 0.	0	RO

19.14 GPIO Register

REG[F0h] GPIO-A Direction (GPIOAD)

Bit	Description	Default	Access
	PIOA In/Out Control		
7-0	0: Output.	FFh	RW
	1: Input.		

REG[F1h] GPIO-A (GPIOA)

Bit	Description	Default	Access
	GPIOA Data		
	Write: Output Data to GPIOA		
7-0	Read: Read Data from GPIOA	NA	RW
	GPIOA[7:0] are General Purpose I/O. These signals are shared with DB[15:8]. They are available only when Host is in 8bits parallel or Serial mode.		

REG[F2h] GPIO-B (GPIOB)

Bit	Description	Default	Access
7-5	NA	NA	NA
4	GPIOB[4] Data Write: Output Data to GPOB[4] Read: Read Data from GPIB[4] GPOB[4] is shared with KO[0], GPIB[4] is shared with KI[0].	NA	RW
3-0	GPIB[3:0] Data Read: Read Data from GPIB[3:0] GPIB[3:0] are shared with { A0, WR#, RD#, CS# }. They are available only in Serial Host I/F.	NA	RO

REG[F3h] GPIO-C Direction (GPIOCD)

Bit	Description	Default	Access
7-0	GPIOC In/Out Control 0: Output 1: Input.	FFh	RW

REG[F4h] GPIO-C (GPIOC)

Bit	Description	Default	Access
7	GPIOC[7] Data Write: Output Data to GPIOC[7] Read: Read Data from GPIOC[7] GPIOC[7] is shared with PWM[0]. GPIOC is available only when PWM and SPI Master functions are disabled.	NA	RW
6-5	NA	NA	NA
4-0	GPIOC[4:0] Data Write: Output Data to GPIOC[4:0] Read: Read Data from GPIOC[4:0] GPIOC[4:0] are shared with { SFCS1#, SFCS0#, SFDI, SFDO, SFCLK }. They are available when PWM and SPI Master functions are disabled.	NA	RW

REG[F5h] GPIO-D Direction (GPIODD)

Bit	Description	Default	Access
	GPIOD In/Out Control		
7-0	0: Output	FFh	RW
	1: Input		

REG[F6h] GPIO-D (GPIOD)

Bit	Description	Default	Access
7-0	GPIOD Data Write: Output Data to GPIOD[7:0] Read: Read Data from GPIOD[7:0] GPIOD[7:0] are shared with PD[18, 2, 17, 16, 9, 8, 1, 0]. GPIOD[5,4,1,0] are available when LCD panel data bus is 16 or 12bits. GPIOD[7,6,3,2] are available when LCD panel data bus is 16bits.	NA	RW

REG[F7h-FAh]: Reserved.

19.15 Keypad-scan Control Register

REG[FBh] Keypad-scan Control Register 1 (KSCR1)

Bit	Description	Default	Access
7	Must set as 0.	0	0
6	Long Key Enable 1: Enable. Long key cycle is set by KSCR2 bit[4:2]. 0: Disable.	0	RW
5-4	Short Key de-bounce Times De-bounce times of keypad scan frequency. 00b: 4 01b: 8 10b: 16 11b: 32	0	RW
3	Repeatable Key Enable 0: Disable Repeatable Key 1: Enable Repeatable Key i.e., if a key is always pressed, and Long Key is disabled, then controller will issue key interrupt repeatedly in every short key de-bounce time. On the other hand, if Long Key is enabled, then controller will issue key interrupt in every long key recognition time. Please note once an interrupt is issued, MCU needs to clear the interrupt flag so that the next interrupt can be recognized.	0	RW
2-0	</td <td>0</td> <td>RW</td>	0	RW

REG[FCh] Keypad-scan Controller Register 2 (KSCR2)

Bit	Description	Default	Access
	Keypad-scan Wakeup Enable		
7	0: Keypad-scan Wakeup function is disabled.	0	R/W
	1: Keypad-scan Wakeup function is enabled		
6	Key Released Interrupt Enable	0	RW

Bit	Description	Default	Access
	0: Without interrupt event when all key released 1: Generate an interrupt when all key released		
5	NA	NA	NA
4-2	Long Key Recognition Factor It determines long key recognition time. Value from 0 to 7. Please note that short key will be recognized before long key is recognized. LongKey Recognition Time = RowScanTime * 5 * (Long Key Recognition Factor +1)* 1,024	0	RW
1-0	Numbers of Key Hit 00b:No key is pressed 01b: One key is pressed, REG[FDh] for the key code. 10b: Two keys are pressed, REG[FEh] for the 2nd key code. 11b: Three keys are pressed, REG[FFh] for the 3rd key code. These bits will automatically return to 00h if there is no key pressed within a de-bounce time.	0	RO

REG[FDh] Keypad-scan Data Register (KSDR1)

Bit	Description	Default	Access
7-0	Key Strobe Data1 The corresponding key code 1 that is pressed. These bit will automatically return to FFh if there is no key pressed within a de-bounce time.	TBD	RO

REG[FEh] Keypad-scan Data Register (KSDR2)

Bit	Description	Default	Access
7-0	Key Strobe Data2 The corresponding key code 2 that is pressed. These bits will automatically return to FFh if there is no key pressed within a de-bounce time.	TBD	RO

REG[FFh] Keypad-scan Data Register (KSDR3)

Bit	Description	Default	Access
7-0	Key Strobe Data3 The corresponding key code 3 that is pressed. These bits will automatically return to FFh if there is no key pressed within a de-bounce time.	TBD	RO

20. Package Information

20.1 LT7681/LT7683/LT7686 (LQFP-128pin)

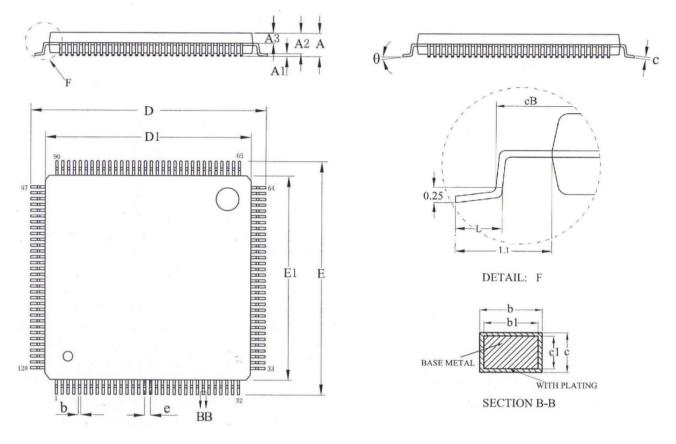


Figure 20-1: 128Pin LQFP Outline

Symbol	Millimeter			Symbol		Millimeter	
Symbol	Min.	Nom.	Max	Symbol	Min.	Nom.	Max
Α	-	-	1.60	D1	13.9	14.0	14.1
A1	0.05	-	0.15	E	15.8	16.0	16.2
A2	1.35	1.40	1.45	E1	13.9	14.0	14.1
A3	0.59	0.64	0.69	eB	15.05	-	15.35
b	0.14	-	0.22	е		0.40BSC	
b1	0.13	0.16	0.19	L	0.45	-	0.75
С	0.13	-	0.17	L1	1.00REF		
c1	0.12	0.13	0.14	θ	0		7
D	15.8	16.00	16.2				

Table 20-1: 128Pin LQFP Dimension

20.2 LT7680 (QFN-68pin)

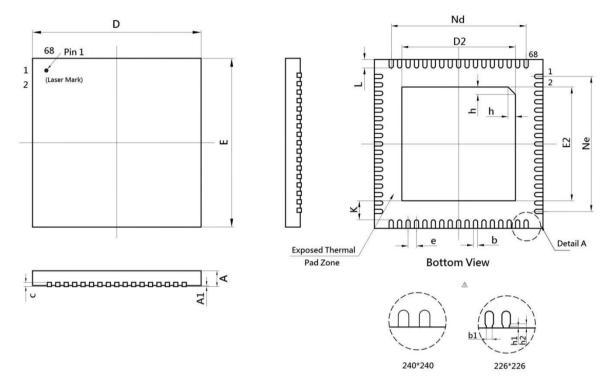


Figure 20-2: 68Pin QFN Outline

Note: When PCB layout, the heat pad of LT7680's back (thermal Pad Zone) must be directly	
grounded.	

Table 20-2: 68Pin QFN Dimenstion

Symbol	Millimeter			Cumhal	Millimeter			r
Symbol	Min.	Nom.	Max	Symbol	Min.	Nom.	Max	
Α	0.70	0.75	0.8	E	7.9	8.0	8.10	
A1	-	0.02	0.05	Ne	6.40BSC			
b	0.15	0.20	0.25	L	0.35	0.40	0.45	
b1		0.14REF		K	0.20	-	-	
С	0.18	0.20	0.25	h	0.30	0.35	0.40	
D	7.90	8.00	8.10	h1	0.04REF			
е		0.40BSC		h2	0.10REF			
Nd		6.40BSC						

L/F 载体尺寸	Symbol	Millimeter	L/F Dimension	Symbol	Millimeter
240*240	D2	5.49+/- 0.10	226*226	D2	5.39+/- 0.10
240 240	E2	5.49+/- 0.10	220 220	E2	5.39+/- 0.10

21. Revision

Version	Date	Description
V1.0	2017/11/01	LT768x Preliminary Release
V1.1	2018/01/26	 Modify Table 7-2, Table 6-3, Table 18-1 Note, REG[0Bh], REG[0Ch], REG[0Dh]. Modify Section 1.1, 1.2 Modify LT7680B Embedded Display RAM Size.
V2.0	2018/05/01	 Modify Sction 1.1 Clock design guidelines of OD (Page27) and three clock signals design rule (Page28) Remove all product information about LT7685.
V3.0	2019/08/03	 Update Table 1-1: Model Selection Table 8-1: LT768x' Model vs. Embedded Display RAM Capacity
V4.0	2020/07/10	Update LT7680 MCU's I2C Interface to 4-Wires SPI.
V4.1	2021/07/14	Update pdf file format.
V4.2	2022/02/06	Add ESD and Latch-up testing data

Table 21-1: Revision

22. Copyright

This document is the copyright of Levetop Semiconductor Co., Ltd. No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of Levetop. The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Levetop assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Levetop makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Levetop's products are not authorized for use as critical components in life support devices or systems. Levetop reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at https://www.levetop.tw/en/index.html