

LT768_{0/1/3/6}

TFT-LCD 绘图加速控制芯片

High Performance TFT-LCD Graphics Controller

▶ 芯片介绍

LT7680/1/3/6 是一款高效能 TFT-LCD 图形加速显示芯片。其主要的功能就是协助 MCU 将所要显示到 TFT 屏的内容传递给 TFT 驱动器(Driver),并且提供图形加速、PIP(Picture-in-Picture)、几何图形绘图等功能,除了提升显示效率外,还大大的降低 MCU 处理图形显示所花费的时间,而LT768x 也支持非常宽广的显示分辨率,可以由 320*240(QVGA)到1280*1024(SXGA),显示屏则支持 16/18/24bits 的 RGB 接口。

LT768x 支持各种 MCU 接口,包括 SPI、I2C 的串口,或者是 8 位、16 位并行接口。为了达到多层次高分辨率的显示效果,LT768x 内建 128Mb 显示

内存,可以支持从每像素 1bit 的 2 灰阶到高达每像素 24bits 的 16M 颜色显示。同时要减少动画显示的 MCU 在软件操作上的负担,LT768x 内建几何绘图引擎,支持画点、画线、画曲线、椭圆、三角形、矩形、圆角矩形等功能,同时内嵌的硬件图形加速引擎 (BTE) 提供了命令类型的图形操作,如显示旋转、画面镜射、画中画 (PIP/子母画面) 及图形混合透明显示等功能,大大提升了产品的显示效能,因而能够极大程度地减轻 MCU 的软件运行负担,如果使用高速的 SPI 接口更能减少 MCU I/O 口的需求,而不必为了 TFT 屏而去升级 MCU。LT768x 强大的显示功能非常适合用在有 TFT-LCD 屏的电子产品上,如家电、多功能事务机、工业设备、工业控制、电子仪器、医疗设备、人机接口、检测设备等产品。

🔁 内部方块图

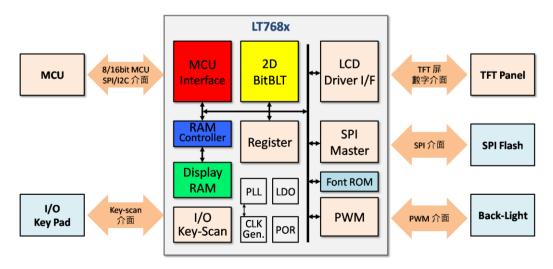


图 A-1: LT768x 内部方块图

▶ 系统应用方块图

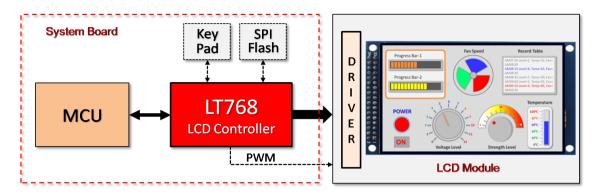


图 A-2: LT768 设置在系统主板上

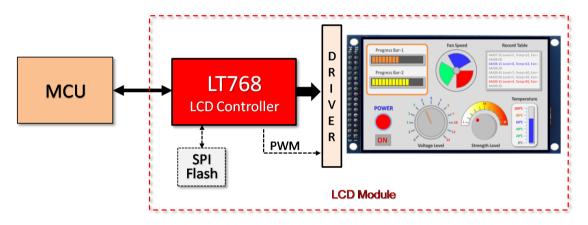


图 A-3: LT768 设置在 LCD 模块上

▶ 型号信息

表 A-1: 型号说明

型 号	封 装	内建显示内存	分辨率(最高)	色彩
LT7681	LQFP-128	128Mb	640*480	16.7M 色
LT7683	LQFP-128	128Mb	1024*768	16.7M 色
LT7686	LQFP-128	128Mb	1280*1024	16.7M 色
LT7680A-R	QFN-68 (8*8)	128Mb	1280*1024	65K / 262K 色
LT7680B-R	QFN-68 (8*8)	128Mb	480*320	65K / 262K 色

▶ 功能简介

MCU 界面

- 支持 8 位或 16 位的 8080 或是 6800 并口接口。
- 支持 3 线或 4 线 SPI 串口接口。
- 支持 I2C 串口接口。

显示内存

- LT7680A-R/7680B-R: 内建 128Mb 的显示内存。
- LT7681/7683/7686: 内建 128Mb 的显示内存。

显示色彩数据格式

■ 1bpp : 单色 (1bit/像素)。

■ 8bpp : 彩色 RGB 3:3:2 (1 byte/像素)。 ■ 16bpp : 彩色 RGB 5:6:5 (2bytes/像素)。

■ 24bpp: 彩色 RGB 8:8:8 (3bytes/像素或是

4bytes/像素)。

➤ Index 2:6 (64 索引色/像素, 含透明度属性)

αRGB 4:4:4:4 (4,096 索引色/像素,含透明 度属性)

面板接口与分辨率

- 支持 16、18、24bits RGB 接口面板。
- 支持的分辨率:

QVGA : 320*240 *16/18/24bits TFT 屏
 WQVGA: 480*272 *16/18/24bits TFT 屏

VGA : 640*480 *16/18/24bits TFT 屏
 WVGA : 800*480 *16/18/24bits TFT 屏
 SVGA : 800*600 *16/18/24bits TFT 屏
 QHD : 960*540 *16/18/24bits TFT 屏
 WSVGA: 1024*600 *16/18/24bits TFT 屏

> XGA : 1024*768 *16/18/24bits TFT 屏

> SXGA : 1280*1024 *16/18/24bits TFT 屏

显示功能

- 支持使用者可自行定义4个32*32的图形光标。
- 提供虚拟显示功能:虚拟显示可显示大于 LCD 面板大小的图像,这样图像可以在任何方向上 轻松滚动。
- 提供画中画 (PIP) 显示: 支持两个 PIP 视窗区域: 启用的 PIP 视窗显示在主视窗的上层,而 PIP1 视窗显示在 PIP2 视窗的上层。
- 支持多重显示功能:可以在显示缓冲区之间切 换主显示视窗,达到简单的动画显示效果。
- 支持唤醒时迅速显图像功能。
- 支持镜像和旋转、垂直与水平翻转显示功能。
- 彩带显示 (Color Bar Display) : 在没有对内 部显示内存写入数据的情况下仍然可以以彩带 的方式显示,默认分辨率为 640*480 像素。

区块传输引擎 (BitBLT)

- 内建 2D BitBLT 引擎。
- 提供带光栅运算的复制图像功能。
- 提供颜色深度转换。
- 实心填充和图案填充功能:
 - ▶ 提供用户定义的 8*8 图像或 16*16 图像。
- 提供两个图像合成一个图像功能:
 - ➤ 色度键控功能 (Chroma-Keying): 根据 透明度将图像与指定的 RGB 颜色混合
 - ▶ 图形混合透明模式 (Window Alpha Blending): 根据指定区域内的透明度将两个图像混合。
 - ▶ 像素混合透明模式 (Dot Alpha Blending):根据 RGB 格式及透明度将两个图像混合。

几何图形加速器

■ 提供画点、线、曲线、椭圆、三角形、矩形、圆 角矩形等绘图功能。

显示文字功能

- 内建 ISO/IEC 8859-1/2/4/5 的 8*16、12*24、 16*32 字型。
- 支持使用者自定义半型字角与全型字 (8*16、12*24、16*32)。
- 提供可程序文字光标。
- 支持垂直与水平放大字型 (*1, *2, *3, *4 倍)。
- 支持文字 90 度旋转。

SPI Master 界面

- 支持外部串行闪存 (Serial Flash) 数据复制至图 框缓冲区。
- 兼容标准 SPI 规格。
- 提供 16bytes 读取 FIFO 及 16bytes 写入 FIFO。
- 在 Tx FIFO 完全清空并且 SPI Tx/Rx 引擎闲置时 会发出中断。

I2C 界面

- 提供 I2C 接口与外部 I2C 装置连接。
- 提供标准传输模式 (100kbps) 与快速传输模式 (400kbps) 。

PWM 界面

- 内建 2 组 16bits 计数器。
- 可程序化的工作周期定。

矩阵键盘

- 提供可程序化的 5*5 矩阵键盘接口。
- 支持长按键及重复键功能。
- 提供按键唤醒。

省电模式

- 提供 3 种省电模式: 待机 (Standby) 、休眠 (Suspend) 与睡眠 (Sleep) 模式。
- 支持使用 MCU、按键唤醒。

时钟 (Clock)

■ 内建可程序化 PLL, 提供内部时钟、外部 LCD 时钟、内部显示内存时钟。

复位方式

■ 提供电源启动复位、外部硬件复位和软件命令复位。

电源供应

- VDD 电压: 3.3V +/- 0.3V。
- 内建 1.8V LDO。

封装型式

■ LQFP-128Pin, QFN-68Pin 封装。

工作温度

■ -40°C~85°C。

▶ 芯片脚位图

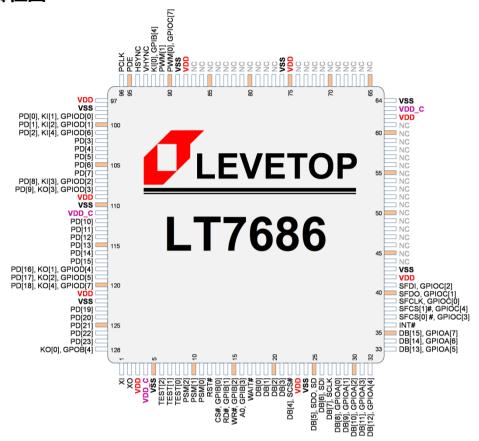


图 A-4: LT7681/LT7683/LT7686 引脚图 (LQFP-128Pin)

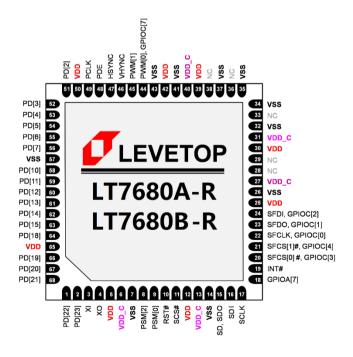


图 A-6: LT7680x-R 引脚图 (QFN-68Pin)

▶ 引脚信号说明 1 (LT7681/LT7683/LT7686/128Pin-LQFP)

MCU 接口设定信号 (3 根引脚)

表 A-2: MCU 接口设定信号

脚号	引脚名称	I/O	功 能 说 明			
			MCU :	接口设定		
				PSM[2:0]	MCU 接口模式	
				0 0 X	选择并口 8 位或 16 位的 8080 模式	
				0 1 X	选择并口 8 位或 16 位的 6800 模式	
9~11	PSM[2:0]	I		100	选择串口 3 线式 SPI 模式	
				1 0 1	选择串口 4 线式 SPI 模式	
				11X	选择串口 I2C 模式	
			如果 M	ICU 接口设置	是为并行模式,则 PSM[0] 为外部中断输	ì入引
			脚。			

MCU 并口信号 (22 根引脚)

表 A-3: MCU 并口信号

脚号	引脚名称	I/O	功 能 说 明
35~25, 22~18	DB[15:0]	Ю	MCU 数据总线 当与 MCU 连接接口设定为并口模式时,这些数据总线作为与 MCU 的数据传送接口。 DB[15:8] 在 8 位的并口模式下可以设定当作 GPIO 接口使用。 DB[7:0] 也是共享脚位。如果设定为串口模式时,这些数据总线将 作为串口信号使用。请参考第 2 章「MCU 接口」说明。
13	CS# GPIB[0]	I	片选信号 CS# = 0, 代表 MCU 对 LT768x 进行命令或是数据读写周期。 如果 MCU 接口设置为串口模式,则此脚位可以设置为 GPIB[0],有内部拉高电阻。
14	RD# EN GPIB[1]	I	读取控制信号 在 8080 并口模式,此引脚为 RD#信号,RD# = 0,代表 MCU 对 LT768x 进行数据读取或是状态读取周期。 在 6800 并口模式,此引脚为 EN 信号,EN = 1,代表 MCU 对 LT768x 的控制处于使能(Enable)周期。 如果 MCU 接口设置为串口模式,则此脚位可以设置为 GPIB[1], 有内部拉高电阻。

表 A-3: MCU 并口信号 (续)

脚号	引脚名称	I/O	功 能 说 明
15	WR# RW# GPIB[2]	I	写入控制信号 在8080 并口模式,此引脚为WR#信号,WR# = 0,代表MCU对LT768x进行命令写入或是数据写入周期。 在6800 并口模式,此引脚为RW#信号,RW# = 1,代表MCU对LT768x进行数据读取或是状态读取周期。RW# = 0,代表MCU对LT768x进行命令写入或是数据写入周期。 如果MCU接口设置为串口模式,则此脚位可以设置为GPIB[2],有内部拉高电阻。
16	Α0	I	命令或数据选择信号 A0 = 0,代表 MCU 对 LT768x 进行状态读取或是命令写入周期。 A0 = 1,代表 MCU 对 LT768x 进行数据读取或是数据写入周期。
36	INT#	0	中断输出信号 当设定的中断条件发生,此引脚变成低电位,用来产生一中断输出 告知 MCU。
17	WAIT#	0	等待输出信号 当 MCU 对 LT768x 进行读写控制时,如果 LT768x 处于忙碌状态,会将 WAIT#变成低电位,用来告知 MCU 进入等待周期。

MCU 串口信号 (8根引脚)

表 A-4: MCU 串口信号

脚号	引脚名称	I/O	功 能 说 明
27	SCLK (DB[7])	I	串口时钟信号 当与 MCU 连接接口设定为串口模式(SPI 或 I2C)时,此引脚为 串口时钟信号。 这是一个与并口数据线 DB[7] 共享的引脚。
26	SDI I2C_SDA (DB[6])	I	4线 SPI 数据输入、I2C 数据信号 在串口 4线 SPI 模式,SDI 代表串口数据输入,也就是接收来自 MCU 的 MOSI 输出信号。 在串口 I2C 模式,I2C_SDA 代表 I2C 的数据引脚。 此引脚在 3线 SPI 模式下未被使用,请接到地(GND)。
25	SDO SD I2CA[5] (DB[5])	Ю	4线 SPI 数据输出、3线 SPI 数据信号、I2C 地址选择信号 在串口 4线 SPI 模式,SDO 代表串口数据输出到 MCU 的 MISO 输入端。 在串口 3线 SPI 模式,SD 代表 3线 SPI 的双向资料引脚。 在串口 I2C 模式,此引脚为 I2C 装置地址 bit[5]。 这是一个与并口数据线 DB[5] 共享的引脚。

表 A-4: MCU 串口信号 (续)

脚号	引脚名称	1/0	功 能 说 明
	SCS#		SPI 片选信号、I2C 地址选择信号
22	12CA[4]		在串口 SPI 模式,SCS#代表 SPI 片选信号。
22		'	在串口 I2C 模式,此引脚为 I2C 装置地址 bit[4]。
	(DB[4])		这是一个与并口数据线 DB[4] 共享的引脚。
			I2C 地址选择信号
21 10	I2CA[3:0]	1	在串口 I2C 模式,这些引脚为 I2C 装置地址 bit[3:0]。
21~18	(DB[3:0])	I	这些是与并口数据线 DB[3:0] 共享的引脚。在 3 线 SPI 模式下未
			被使用,请接到地(GND)。

外部串行 Flash / SPI Master 信号 (5 根引脚)

表 A-5: 外部串行 Flash / SPI Master 信号

脚号	引脚名称	1/0	功 能 说 明
37	SFCS[0]# GPIOC[3]	Ю	外部 Serial Flash #0 或是 SPI #0 芯片选择信号 如果串行 SPI 功能被禁能,则可以将此引脚设成为 GPIOC[3],默 认为输入功能。
38	SFCS[1]# GPIOC[4]	Ю	外部 Serial Flash #1 或是 SPI #0 芯片选择信号 如果串行 SPI 功能被禁能,则可以将此引脚设成为 GPIOC[4],默认为输入功能。
39	SFCLK GPIOC[0]	Ю	外部 SPI 串行频率信号 此引脚是串行时钟信号输出,连接到外部 Serial Flash 或是 SPI 装置。 如果串行 SPI 功能被禁能,则可以将此引脚设成为 GPIOC[0],默认为输入功能。
40	SFDO GPIOC[1]	Ю	LT7680x-R 的 SPI 数据输出信号 / 主输出从输入 (MOSI) LT768x 输出数据到外部的 Serial Flash 或是 SPI 元件。 单模式 (Single Mode) : SPI Flash 或 SPI 元件的数据输入。对于 LT768x 而言它是输出。 双模式 (Dual Mode) : 将信号用作双向数据#0 (SIOO)。仅在串行 SPI Flash DMA 模式下有效。 如果串行 SPI 功能被禁能,则可以将此引脚设成为 GPIOC[1],默认为输入功能。
41	SFDI GPIOC[2]	Ю	LT7680x-R 的 SPI 数据输入信号/ 主输入从输出 (MISO) LT768x 由外部的 Serial Flash 或是 SPI 元件读取数据。 单模式 (Single Mode) : SPI Flash 或 SPI 元件的数据输出。对于 LT768x 而言它是输入。 双模式 (Dual Mode) : 将信号用作双向数据 #1 (SIO1)。仅在串行 SPI Flash DMA 模式下有效。 如果串行 SPI 功能被禁能,则可以将此引脚设成为 GPIOC[2],默认为输入功能。

LCD 屏接口信号 (28 根引脚)

表 A-6: LCD 屏接口信号

脚号	引脚名称	I/O				功能说明	1															
			LCI	 D 数据总线																		
			输出		T-LCD 屏的	数据总线,ī	可经由寄存器	器来设定连接相														
						TFT-LCD	Interface															
				Pin	11b	10b	01b	00b														
				Name	(GPIO)	(16bits)	(18bits)	(24bits)														
				PD[0]		PIOD[0] / KI		В0														
				PD[1]		PIOD[1] / KI		B1														
				PD[2]		6] / KI[4]	В0	B2														
				PD[3]	GPIOE[0]	B0	B1	В3														
				PD[4]	GPIOE[1]	B1	B2	B4														
				PD[5]	GPIOE[2]	B2	В3	B5														
				PD[6]	GPIOE[3]	В3	B4	B6														
				PD[7]	GPIOE[4]	B4	B5	B7														
	1	Ю		PD[8]	GPIOD[2] / KI[3]		[3]	G0														
127~123				PD[9]	GF	GPIOD[3] / KO[3]		G1														
120~112				PD[10]	GPIOE[5]	G0	G0	G2														
108~99																			PD[11]	GPIOE[6]	G1	G1
																				PD[12]	GPIOE[7]	G2
						PD[13]	GPIOF[0]	G3	G3	G5												
																		PD[14]	GPIOF[1]	G4	G4	G6
						PD[15]	GPIOF[2]	G5	G5	G7												
					PD[16]		PIOD[4] / KC		R0													
				PD[17]		10D[5] / KC		R1														
				PD[18]	_	7] / KO[4]	R0	R2														
				PD[19]	GPIOF[3]	R0	R1	R3														
				PD[20]	GPIOF[4]	R1	R2	R4														
				PD[21]	GPIOF[5]	R2	R3	R5														
				PD[22]	GPIOF[6]	R3	R4	R6														
				PD[23]	GPIOF[7]	R4	R5	R7														
				置为 18bpp				共享。例如 LCD 被定义为 GPIC														

表 A-6: LCD 屏接口信号 (续)

脚号	引脚名称	I/O	功 能 说 明
			LCD 屏幕扫描时钟信号
96	PCLK	0	屏幕扫描时钟信号连接至通用的 TFT 驱动接口讯号。此信号为内
			部 SPLL 驱动产生。
93	VSYNC	0	LCD 垂直同步信号
95	VSTINC	O	垂直同步信号 VSYNC 连接至通用的 TFT 驱动接口讯号。
94	HSYNC	0	LCD 水平同步信号
94	пэтис	O	水平同步讯号 HSYNC 连接至通用的 TFT 驱动接口讯号。
95	PDE	0	LCD 屏幕数据使能
95	FDE		此信号为连接至通用 TFT 驱动接口的数据有效或数据使能信号。

PWM 信号 (2 根引脚)

表 A-7: PWM 信号

脚号	引脚名称	1/0	功 能 说 明
90	PWM[0] INITDIS GPIOC[7] CCLK	Ю	PWM #0 输出信号 此为一个可程序化的 PWM 输出信号,可以用来控制 TFT 屏的背 光或是其他元件。PWM 的输出模式可经由寄存器设定来。 PWM[0] 这根引脚在复位 (Reset) 周期被当成INITDIS 「开机显 示」引脚,复位时会被检测是否为默认的低电位,如果是则「开机 显示」功能被禁止,如果有外部上拉电阻,则复位周期时会检测到 高电位,那么「开机显示」功能被使能(Enable)。 此引脚与GPIOC[7] 共享,如果PWM被禁能,默认GPIOC[7] 是 输入功能或是输出系统时钟信号(CCLK)。
91	PWM[1]	Ю	PWM #1 输出信号 此为一个可程序化的 PWM 输出信号,可以用来控制 TFT 屏的背 光或是其他元件。PWM 的输出模式可经由寄存器设定来。

GPIO 信号 (28 根引脚)

表 A-8: 通用 IO 口信号

脚号	引脚名称	I/O	功 能 说 明
35~28	GPIOA[7:0]	Ю	GPIO 输出/输入信号 GPIOA[7:0] 为通用型 I/O,这些引脚与 DB[15:8] 共享,只有 MCU 设成 8 位并口模式或串口模式时 GPIOA 才可以使用。这些 引脚的输出模式可经由寄存器设定来。
92, 128, 16~13	GPIB[4], GPOB[4], GPIB[3:0]	Ю	GPIO 输出/输入信号 GPIB[4] 的输出数据与 KI[0] 共享引脚; GPOB[4] 的输出数据与 KO[0] 共享引脚; GPIB[3:0] 的输入信号与{ A0, WR#, RD#, CS#} 共享引脚。GPIB[3:0] 只提供读取功能,并只有在 MCU 设 成串口模式才可以使用。这些引脚的输出模式可经由寄存器设定 来。
90, 38, 37, 41~39	GPIOC[7], GPIOC[4:0]	Ю	GPIO 输出/输入信号 GPIOC[7] 的输出数据与 PWM[0] 共享引脚。 GPIOC 功能只有在 PWM 与 SPI Master 的功能被禁止时才能使用; GPIOC[4:0] 与 { SFCS1#, SFCS0#, SFDI, SFDO, SFCLK } 共享引脚,只有在 PWM 与 SPI Master 的功能被禁止时才能使用。这些引脚的输出模式可经由寄存器设定来。
120, 101 119, 118 108, 107 100, 99	GPIOD[7:0]	Ю	GPIO 輸出/輸入信号 GPIOD[7:0] 与 PD[18, 2, 17, 16, 9, 8, 1, 0] 共享引脚, GPIOD[5,4,1,0] 只有在 LCD 屏幕数据总线设成 16 或 12bits 时才能使用, GPIOD[7,6,3,2] 则只有在 LCD 屏幕数据总线设成 16bits 时才能使用。这些引脚的输出模式可经由寄存器设定来。

按键矩阵信号 (10根引脚)

表 A-9: 按键矩阵信号

脚号	引脚名称	I/O	功 能 说 明
101, 107, 100, 99, 92	KI[4:0] I2CMCK	I	按键矩阵的数据输入信号 引脚内建 Pull-Up 电阻。 提示: KI[4:1] 与 PD[8]、PD[2:0] 共享, 因此当数字 TFT-LCD 接 口被设成 24bits 模式, 按键矩阵功能将无效。 KI[0] 在使用 I2C Master 时为 I2CMCK 功能。
120,108, 119,118, 128	KO[4:0] I2CMDA	0	按键矩阵的数据输出信号 引脚为 Open-Drain 输出模式。 提示: KO[4:1] 与 PD[9]、 PD[18:16] 共享, 因此当数字 TFT-LCD 接口被设成 24bits 模式,按键矩阵功能将无效。 KO[0] 在使用 I2C Master 时为 I2CMDA 功能。

电源与时钟信号 (23 根引脚)

表 A-10: 电源与时钟信号

脚号	引脚名称	1/0	功 能 说 明		
1	ΧI	I	晶振 (Crystal) / 时钟信号 输入 此引脚连接至外部晶振,为内部晶振电路输入信号,当使用有源晶振或是外部时钟信号可以由此脚输入。晶振频率 (OSC) 范围在4MHz~12MHz之间。		
2	ХО	0	晶振 (Crystal) 输出 此引脚连接至外部晶振,为内部晶振电路输出信号。		
4, 63, 111	VDD_C	PWR	内核电源输出 每根 VDD C 引脚必须外接一个 1uF 和一个 0.1uF 滤波电容到地。		
3, 23, 42, 62, 75, 88, 97, 109, 121	VDD	PWR	母根 VDD_C 引脚必须外接一个 Tur 和一个 0.Tur 滤波电容到地。 3.3V 电源输入		
5, 24, 43, 64, 76, 89 98, 110, 122	VSS	PWR	GND 接地		

复位与测试信号 (4根引脚)

表 A-11: 复位与测试信号

脚号	引脚名称	1/0	功 能 说 明
12 RST#		1/0	复位输入信号 当 RST# = 0 时,并且维持 256 个时钟周期长度,LT768x 将产生 复位动作。
6~8	TEST[2:0]	I	测试模式信号 这些引脚是提供给 LT768 在测试时使用,正常使用应连接到地 (GND)。 如果TEST[0] 为1时,则内部PLL被禁能,芯片的时钟信号将由外 部引脚提供。 如果 TEST[2:1] 为 01 时,则 SPI Master 引脚将处于浮接状态, 可以让外部元件对 SPI Master 上的 Serial Flash 进行 ISP (In- System-Programming) 动作。

到脚信号说明 2 (LT7680x-R/68Pin-QFN)

LT7680x-R 为 68Pin QFN 封装,接口的功能说明请参照前节引脚信号说明 1 (LT7681 / LT7683 / LT7686 / 128Pin-LQFP) 。

MCU 接口设定信号 (2 根引脚)

表 A-12: MCU 接口设定信号

脚号	引脚名称	1/0	功 能 说 明		
8~9	PSM[2] PSM[0]	ı	MCU 接口设定 LT7680x-R 只支持串口 3 线 SPI 及 4 线 SPI 模式,而 PSM[2] 则 必须接到高电位。 PSM[0] = 0,选择串口 3 线式 SPI 模式 PSM[0] = 1,选择串口 4 线式 SPI 模式		

MCU 串口信号 (5 根引脚)

表 A-13: MCU 串口信号

脚号	引脚名称	I/O	功 能 说 明	
17	SCLK	ı	3 线 SPI 串口的时钟信号	
16	SDI	I	4 线 SPI 数据输入信号	
15	SD	10	2 代 CDI 新语位日 4 代 CDI 新语体出位日	
15	SDO	10	3 线 SPI 数据信号、4 线 SPI 数据输出信号	
11	SCS#	I	SPI 片选信号	
19	INT#	0	中断输出信号	

LCD 屏接口信号 (22 根引脚)

表 A-14: LCD 屏接口信号

脚号	引脚名称	1/0	功 能 说 明	
2~1, 68~66, 64, 63~58, 56~51	PD[23:18], PD[15:10], PD[7:2],	Ю	LCD 数据总线 输出数据至 TFT-LCD 屏的数据总线,可经由寄存器来设定连接相 对应的 RGB 总线。	
49	PCLK	0	LCD 屏幕扫描时钟信号	
46	VSYNC	0	LCD 垂直同步信号	
47	HSYNC	0	LCD 水平同步信号	
48	PDE	0	LCD 屏幕数据使能	

外部串行 Flash/ SPI Master 信号 (5根引脚)

表 A-15: 外部串行 Flash / SPI Master 信号

脚号	引脚名称	1/0	功 能 说 明	
21~20	SFCS[1:0]#	10	外部 Serial Flash 或是 SPI 芯片选择信号	
22	SFCLK	10	外部 SPI 串行频率信号	
23	SFDO	10	LT7680x-R 的 SPI 数据输出信号 / 主输出从输入(MOSI)	
24	SFDI	10	LT7680x-R 的 SPI 数据输入信号/ 主输入从输出 (MISO)	

PWM 信号 (2 根引脚)

表 A-16: PWM 信号

脚号	引脚名称	1/0	功 能 说 明
45~44	PWM[1:0]	Ю	PWM 输出信号

GPIO 信号 (7 根引脚)

表 A-17: 通用 IO 口信号

脚号	引脚名称	1/0	功 能 说 明
18	GPIOA[7]	Ю	GPIO 输出/输入信号
44, 21,	GPIOC[7]		
20, 24,		Ю	GPIO 输出/输入信号
23, 22	GPIOC[4:0]		

电源与时钟信号 (25 根引脚)

表 A-18: 电源与时钟信号

脚号	引脚名称	I/O	功 能 说 明
3	ΧI	I	晶振 (Crystal) / 时钟信号 输入
4	XO	0	晶振 (Crystal) 输出
6, 13, 27, 31, 40	VDD_C	PWR	内核电源输出
5, 12, 25, 30, 39, 42, 50, 65	VDD	PWR	3.3V 电源输入
7, 14, 26, 32, 34, 35, 37, 41, 43, 57,	VSS	PWR	GND 接地

_	Thermal Pad	_	散热焊盘
_	memai rau		IC 的背部散热焊盘直接接地。

复位信号 (1根引脚)

表 A-19: 复位信号

脚号	引脚名称	I/O	功 能 说 明
10	RST#	I/O	复位输入信号

LT768x 系列有不同的封装,支持的 MCU 接口也有所差异,例如 LT7680x-R 为 68pin 的 QFN 封装,只支持串口 3 线 SPI 及 4 线 SPI 模式,下表是 LT768x 系列支持的 MCU 接口对应表:

表 A-20: LT768x 系列支持的 MCU 接口

No.	MCU 接口模式	LT7681 LT7683 LT7686	LT7680A-R LT7680B-R
1	并口 8 位的 8080 模式	V	
2	并口 16 位的 8080 模式	V	
3	并口 8 位的 6800 模式	V	
4	并口 16 位的 6800 模式	V	
5	串口 3 线式 SPI 模式	V	V
6	串口 4 线式 SPI 模式	V	V
7	串口 I2C 模式	V	

▶ 封装信息

■ LT7681/LT7683/LT7686 (LQFP-128pin)

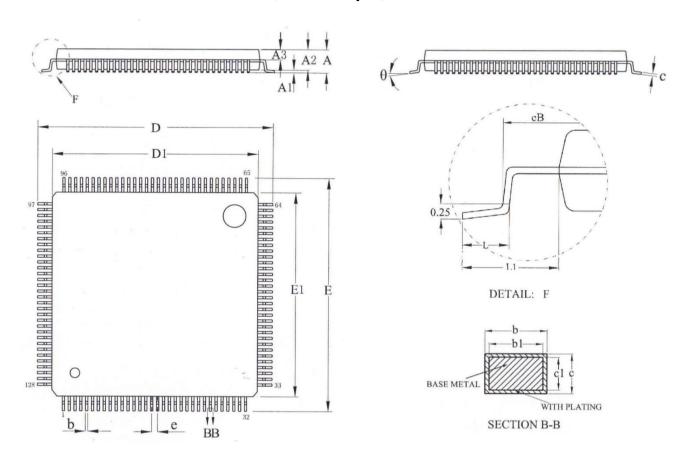


图 B-1: 128Pin LQFP 外观尺寸图

表 B-1: 128Pin LQFP 尺寸参数

Symbol	Millimeter			Cymah al	Millimeter		
	Min.	Nom.	Max	Symbol	Min.	Nom.	Max
Α	-	-	1.60	D1	13.9	14.0	14.1
A 1	0.05	-	0.15	E	15.8	16.0	16.2
A2	1.35	1.40	1.45	E1	13.9	14.0	14.1
A3	0.59	0.64	0.69	eB	15.05	-	15.35
b	0.14	-	0.22	е	0.40BSC		
b1	0.13	0.16	0.19	L	0.45	-	0.75
С	0.13	-	0.17	L1	1.00REF		
c1	0.12	0.13	0.14	θ	0		7
D	15.8	16.00	16.2				

■ LT7680x-R (QFN-68pin)

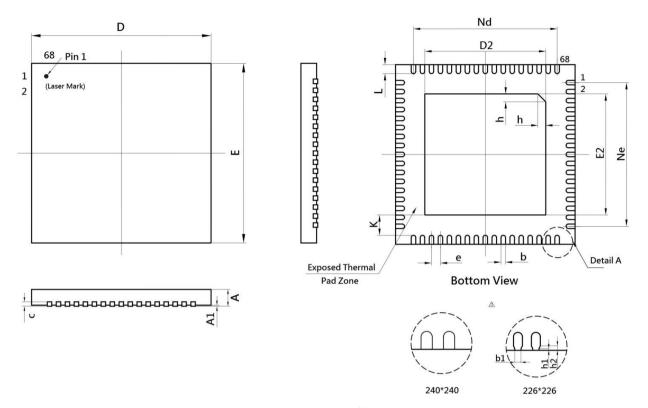


图 B-2: 68Pin QFN 外观尺寸图

提示: PCB 布局时, LT7680x-R 背部的散热焊盘 (Thermal Pad Zone) 必须直接接地。

表 B-2: 68Pin QFN 尺寸参数

Symbol	Millimeter			Cumbal	Millimeter		
	Min.	Nom.	Max	Symbol	Min.	Nom.	Max
A	0.70	0.75	0.8	E	7.9	8.0	8.10
A1	ı	0.02	0.05	Ne	6.40BSC		
b	0.15	0.20	0.25	L	0.35	0.40	0.45
b1	0.14REF			K	0.20	-	ı
С	0.18	0.20	0.25	h	0.30	0.35	0.40
D	7.90	8.00	8.10	h1	0.04REF		
е	0.40BSC			h2	0.10REF		
Nd		6.40BSC					

表 B-3: 載體尺寸

L/F 载体尺寸	Symbol	Millimeter	L/F 载体尺寸	Symbol	Millimeter
240*240	D2	5.49+/- 0.10	226*226	D2	5.39+/- 0.10
	E2	5.49+/- 0.10	226*226	E2	5.39+/- 0.10